Skip to main content
Log in

Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gastrointestinal microbiota plays a crucial role in the health and disease of the host through its impact on nutrition. Gut microbial composition is related to different diets, but an association of microbiota with different diets in infant has not yet been shown. In this work, we compared the fecal microbiota of breast-fed (BF) and formula-fed infants (FF). By using Illumina high-throughput sequencing and biochemical analyses, we found differences in gut microbiota between the two groups. BF infants showed a significant enrichment of Actinobacteria and Firmicutes and depletion of Proteobacteria (P < 0.05), the abundance of Bacteroidetes in the two groups was very low (P > 0.05). Enterobacteriaceae (Proteobacteria) were the dominant bacteria in FF infant fecal microbiota, and Veillonellaceae (Firmicutes) and Enterobacteriaceae (Proteobacteria) were the dominant bacteria in the BF infant fecal microbiota. The number of genera (percentage of sequences >0.1 %) in BF and FF infants was 17 and 15 respectively, and Streptococcus was the dominant bacterial genus in both groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, Hernández-Barranco A, Margolles A, de Los Reyes-Gavilán CG, Gueimonde M (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79(3):763–772

    Article  CAS  Google Scholar 

  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    Article  Google Scholar 

  • Berseth CL, Thureen PJ, Hay WW (2006) Development of the gastrointestinal tract. Neonatal Nutr Metab 2:67–73

    Article  Google Scholar 

  • Bezirtzoglou E, Maipa V, Chotoura N, Apazidou E, Tsiotsias A, Voidarou C, Kostakis D, Alexopoulos A (2006) Occurrence of bifidobacterium in the intestine of newborns by fluorescence insituhybridization. Comp Immunol Microbiol Inf Dis 29(5–6):345–352

    Article  CAS  Google Scholar 

  • Bezirtzoglou E, Tsiotsias A, Welling GW (2011) Microbiota profile in feces of breast-and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17(6):478–482

    Article  Google Scholar 

  • Bode L (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr. Rev67 (Suppl. 2):S183–S191

  • Chao A, Shen TJ (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443

    Article  Google Scholar 

  • Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(1):4586–4591

    Article  CAS  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2011) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696

    Article  Google Scholar 

  • de la Cochetiere MF, Piloquet H, des Robert C, Darmaun D, Galmiche JP, Roze JC (2004) Early intestinal bacterial colonization and necrotizing enterocolitis in infants: the putative role of Clostridium. Pediatr Res 56(3):366–370

    Article  Google Scholar 

  • Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7(11):639–646

    Article  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial microbiota. Science 308(5728):1635–1638

    Article  Google Scholar 

  • Fabrice A, Didier R (2009) Exploring microbial diversity using 16S rRNA high-throughput methods. J Comput Sci Syst Biol 2:074–092

    Article  Google Scholar 

  • Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA, Doré J, Other Members of the INFABIO Team (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breastfeeding, and antibiotics. J Pediatr Gastroenterol Nutr 51(1):77–84

    Article  Google Scholar 

  • González R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE (2008) Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol 74(15):4686–4694

    Article  Google Scholar 

  • Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, Fernández L, Rodríguez JM (2008) Is meconium from healthy newborns actually sterile? Res. Microbiol 159(3):187–193

    Google Scholar 

  • Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133(1):24–33

    Article  CAS  Google Scholar 

  • Klaassens ES, de Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73(4):1388–1392

    Article  CAS  Google Scholar 

  • Lecuit M, Suarez F, Lortholary O (2004) Immunoproliferative small intestinal disease associated with Campylobacter jejuni. Med Sci 20(6–7):638–640

    Google Scholar 

  • Lundequist B, Nord CE, Winberg J (1985) The composition of the faecal microbiota in breast-fed and bottle-fed infants from birth to eight weeks. Acta Paediatr Scand 74(1):45–51

    Article  CAS  Google Scholar 

  • Martín V, Maldonado-Barragán A, Moles L, Rodriguez-Baños M, Campo RD, Fernández L, Rodríguez JM, Jiménez E (2012) Sharing of bacterial strains between breast milk and infant feces. J. Hum. Lact 28(1): 36–44

    Google Scholar 

  • Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF (2013) Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 21(4):167–173

    Article  CAS  Google Scholar 

  • Morelli L (2008) Postnatal development of intestinal microbiota as influenced by infant nutrition. J Nutr 138(9):1791S–1795S

    Google Scholar 

  • Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325(16):1127–1131

    Article  CAS  Google Scholar 

  • Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE (2005) Driessen Quantification of Bifidobacterium spp., Escherichia and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243(1):141–147

    Article  CAS  Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118(2):511–521

    Article  Google Scholar 

  • Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E (2005) Effect of probiotics and breastfeeding on the Bifidobacterium and Lactobacillus/Enterococcus microbiota and humoral immune responses. J Pediatr 147(2):186–191

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736

    Article  CAS  Google Scholar 

  • Stark PL, Lee A (1982) The microbial ecology of the large bowel of breast-fed and formula fed infants during the first year of life. J Med Microbiol 15(2):189–203

    Article  CAS  Google Scholar 

  • Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis in inflammatory bowel disease. Gut 53:1–4

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  Google Scholar 

  • Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’Angelis GL, Shanahan F, van Sinderen D, Ventura M (2009) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75(6):1534–1545

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Google Scholar 

  • Yoshioka H, Iseki K, Fujita K (1983) Development and differences of intestinal microbiota in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72(3):317–321

    CAS  Google Scholar 

  • Young VB (2012) The intestinal microbiota in health and disease. Curr Opin Gastroenterol 28(1):63–69

    Article  CAS  Google Scholar 

  • Zoetendal EG, Booijink CC, Klaassens ES, Heilig HG, Kleerebezem M, Smidt H, de Vos WM (2006) Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1(2):954–959

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Program for Changjiang Scholars and Innovative Research Team in Northeast Agricultural University (IRT0959) for funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guicheng Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, W., Huo, G., Li, X. et al. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World J Microbiol Biotechnol 29, 2365–2372 (2013). https://doi.org/10.1007/s11274-013-1404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1404-3

Keywords

Navigation