Skip to main content

Advertisement

Log in

Diversity and symbiotic effectiveness of beta-rhizobia isolated from sub-tropical legumes of a Brazilian Araucaria Forest

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

While the occurrence of Betaproteobacteria occupying the nodules of tropical legumes has been shown, little is known about subtropical areas. Araucaria Forest is a subtropical endangered ecosystem, and a better understanding of the legume-rhizobial symbionts may allow their use in land reclamation. The 16S rRNA gene of bacteria isolated from nine leguminous species was sequenced and their nodulation tested in Mimosa scabrella and Phaseolus vulgaris. 196 isolates were identified as eight genotypes: Pantoea, Pseudomonas, Bradyrhizobium sp1-2, Rhizobium, and Burkholderia sp1-3. The majority of the isolates from native plants (87 %) were taxonomically related to β-rhizobia, namely Burkholderia, however the legumes Galactia crassifolia and Collea speciosa were nodulated by both α and β-rhizobia, and Acacia dealbata, an exotic plant, only by α-rhizobia. The nifH genes of some isolates were sequenced and N-fixing potential shown by the acetylene reduction test. Most of the isolates nodulated the test plants, some were effective in M. scabrella, but all presented low efficiency in the exotic promiscuous legume P. vulgaris. Pantoea and Pseudomonas did not nodulate and probably are endophytic bacteria. The presented data shows diversity of α, β and γ-Proteobacteria in nodules of subtropical legumes, and suggests host specificity with β-rhizobia. Potential isolates were found for M. scabrella, indicating that a high N-fixing strain may be further inoculated in plants for use in reforestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bertalot MJA, Guerrini IA, Mendoza E, Duboc E, Barreiros RM, Corrêa FM (2004) Retorno de nutrientes ao solo via deposição de serrapilheira de quatro espécies leguminosas arbóreas na região de Botucatu—São Paulo, Brasil. Sci For 65:219–227

    Google Scholar 

  • Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA—SPI, Brasília

  • Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivni-Masson C (2003) Legume Symbiotic Nitrogen by β-Proteobacteria is widespread in Nature. J Bacteriol 85:7266–7272

    Article  Google Scholar 

  • Chen WM, Faria SM, Straliotto R et al (2005a) Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. Appl Environ Microbiol 71:7461–7471

    Article  CAS  Google Scholar 

  • Chen WM, James EK, Chou JH, Sheu SY, Yang SZ, Sprent JI (2005b) Beta-rhizobia from Mimosa pigra, a newly-discovered invasive plant in Taiwan. New Phytol 168:661–675

    Article  CAS  Google Scholar 

  • Chen WM, James EK, Coenye T et al (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851

    Article  CAS  Google Scholar 

  • Chen WM, Faria SM, James EK et al (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. J Syst Evol Microbiol 57:1055–1059

    Article  CAS  Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    Article  CAS  Google Scholar 

  • Elliott GN, Chen WM, Chou JH et al (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180

    Article  CAS  Google Scholar 

  • Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  Google Scholar 

  • Faria SM, Franco A (2002) Identificação de bactérias eficientes na fixação biológica de nitrogênio para espécies arbóreas. EMBRAPA, Seropédica

    Google Scholar 

  • Franco AA, Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation e sustainability in the tropics. Soil Biol Biochem 29:897–903

    Article  CAS  Google Scholar 

  • Gardener BBM (2007) Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97:221–226

    Article  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L et al (2011) Legume-Nodulating Betaproteobacteria: diversity, host range, and future prospects. MPMI 24:1276–1288

    Article  CAS  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309

    Article  CAS  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  • Lammel DR, Brancalion PHS, Dias CTS, Cardoso EJBN (2007) Rhizobia and other legume nodule bacteria richness in Brazilian Araucaria angustifolia forest. Sci Agric 64:400–408

    Article  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  Google Scholar 

  • Muresu R, Polone E, Sulas L et al (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  Google Scholar 

  • Odee DW, Haukka K, Mcinroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  CAS  Google Scholar 

  • Rahmania HA, Räsänenb LA, Afsharia M, Lindströmb K (2011) Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in soils of Iran. Appl Soil Ecol 48:287–293

    Article  Google Scholar 

  • Reis FB Jr, Simon MF, Gross E et al (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946

    Article  Google Scholar 

  • Soares-Ramos JRL, Ramos HJO, Cruz LM, Chubatsu LS, Pedrosa FO, Rigo LU, Souza EM (2003) Comparative molecular analysis of Herbaspirillum strains by RAPD, RFLP, and 16S rDNA sequencing. Genet Mol Biol 26:537–543

    Article  CAS  Google Scholar 

  • Souza A (2007) Ecological interpretation of multiple population size structures in trees: the case of Araucaria angustifolia in South America. Austral Ecol 32:524–533

    Article  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. The Cromwell Press, Kew

    Google Scholar 

  • Torres AR, Araújo WL, Cursino L, Hungria M, Plotegher F, Mostasso FL, Azevedo JL (2008) Diversity of endophytic enterobacteria associated with different host plants. J Microbiol 46:373–379

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodulate bacteria. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans Strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292

    Article  CAS  Google Scholar 

  • Zanini L, Ganade G (2005) Restoration of araucaria forest: the role of perches, pioneer vegetation, and soil fertility. Rest Ecol 13:507–514

    Article  Google Scholar 

Download references

Acknowledgments

To Denise Mescolotti, Fernando Baldesin and Valentina de Fatima de Martin for technical support. To the students Henrique Augusto Robortella and Mylenne Pinheiro for help with the experiments. To EMBRAPA Florestas for the M. scabrella seeds. To Fundação de Apoio a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support and grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke J. B. N. Cardoso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 38 kb)

Supplementary material 2 (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammel, D.R., Cruz, L.M., Carrer, H. et al. Diversity and symbiotic effectiveness of beta-rhizobia isolated from sub-tropical legumes of a Brazilian Araucaria Forest. World J Microbiol Biotechnol 29, 2335–2342 (2013). https://doi.org/10.1007/s11274-013-1400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1400-7

Keywords

Navigation