Skip to main content
Log in

An insecticidal protein from Xenorhabdus ehlersii stimulates the innate immune response in Galleria mellonella

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bacteria Xenorhabdus spp. are entomopathogenic symbionts that can produce several toxic proteins that interfere with the immune system of insects. Recently, we purified the insecticidal protein XeGroEL from Xenorhabdus ehlersii and discovered that injection of XeGroEL into larvae of Galleria mellonella triggers strong immune responses. In this study, we determined the level of induction of several immune-responsive proteins that were secreted into the hemolymph using comparative proteomic analyses of hemolymph proteins from XeGroEL-challenged larvae. Additionally, quantitative real-time reverse transcription-PCR analyses demonstrated increased transcriptional rates of immune-related genes at 5 h post-challenge with purified XeGroEL. Our results help to understand anti-microbial immune responses in G. mellonella, suggesting that the immune system recognizes exogenous proteins and pathogen-associated molecular patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A (2007) Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the Lepidopteran model host Galleria mellonella. Infect Immun 75:175–183

    Article  CAS  Google Scholar 

  • Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K (2006) Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microb Infect 8:2105–2112

    Article  CAS  Google Scholar 

  • Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    Article  CAS  Google Scholar 

  • Bouvaine S, Boonham N, Douglas AE (2011) Interactions between a luteovirus and the GroEL chaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. J Gen Virol 92:1467–1474

    Article  CAS  Google Scholar 

  • Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD (2009) A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol 39:792–800

    Article  CAS  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ (2007) Extracellular heatshock proteins in cell signaling and immunity. Ann N Y Acad Sci 1113:28–39

    Article  CAS  Google Scholar 

  • Cytrynska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T (2007) Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28:533–546

    Article  CAS  Google Scholar 

  • Feldhaar H, Gross R (2008) Immune reactions of insects on bacterial pathogens and mutualists. Microb Infect 10:1082–1088

    Article  CAS  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  Google Scholar 

  • Goodrich-Blair H (2007) They’ve got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Curr Opin Microbiol 10:225–230

    Article  CAS  Google Scholar 

  • Hancock REW, Brown KL, Mookherjee N (2006) Host defence peptides from invertebrates—emerging antimicrobial strategies. Immunobiology 211:315–322

    Article  CAS  Google Scholar 

  • Hu C, Aksoy S (2006) Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Mol Microbiol 60:1194–1204

    Article  CAS  Google Scholar 

  • Jiang H (2008) The biochemical basis of antimicrobial responses in Manduca sexta. Insect Sci 15:53–66

    Article  CAS  Google Scholar 

  • Joshi MC, Sharma A, Kant S, Birah A, Gupta GP, Khan SR, Bhatnagar R, Banerjee N (2008) An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. J Biol Chem 283:28287–28296

    Article  CAS  Google Scholar 

  • Kanost MR, Jiang H, Yu XQ (2004) Innate immune responses of a Lepidopteran insect, Manduca sexta. Immunol Rev 198:97–105

    Article  CAS  Google Scholar 

  • Khandelwal P, Banerjee-Bhatnagar N (2003) Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Appl Environ Microbiol 69:2032–2037

    Article  CAS  Google Scholar 

  • Kim BS, Lee CS, Seol JY, Yun CY, Kim HR (2002) Cloning and expression of 32 kDa ferritin from Galleria mellonella. Arch Insect Biochem Physiol 51:80–90

    Article  CAS  Google Scholar 

  • Lavine M, Strand M (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  CAS  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. P Natl Acad Sci USA 94:14614

    Article  CAS  Google Scholar 

  • Levy F, Bulet P, Ehret-Sabatier L (2004) Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics 3:156–166

    CAS  Google Scholar 

  • Liu W, Qian D, Yan X (2011) Proteomic analysis of differentially expressed proteins in hemolymph of Scylla serrata response to white spot syndrome virus infection. Aquaculture 314:53–57

    Article  CAS  Google Scholar 

  • Memmel NA, Trewitt PM, Silhacek DL, Krishna Kumaran A (1992) Nucleotide sequence and structure of the arylphorin gene from Galleria mellonella. Insect Biochem Mol Biol 22:333–342

    Article  CAS  Google Scholar 

  • Park SY, Kim CH, Jeong WH, Lee JH, Seo SJ, Han YS, Lee IH (2005) Effects of two hemolymph proteins on humoral defense reactions in the wax moth, Galleria mellonella. Dev Comp Immunol 29:43–51

    Article  CAS  Google Scholar 

  • Qi J, He P, Chen W, Wang H, Wang X, Zhang M (2010) Comparative proteome study of apoptosis induced by As4S4 in retinoid acid resistant human acute promyelocytic leukemia NB4-R1 cells. Leuk Res 34:1506–1516

    Article  CAS  Google Scholar 

  • Shi H, Zeng H, Yang X, Zhao J, Chen M, Qiu D (2012) An insecticidal protein from Xenorhabdus ehlersii triggers prophenoloxidase activation and hemocyte decrease in Galleria mellonella. Curr Microbiol 64:604–610

    Article  CAS  Google Scholar 

  • Song KH, Jung SJ, Seo YR, Kang SW, Han SS (2006) Identification of up-regulated proteins in the hemolymph of immunized Bombyx mori larvae. Comp Biochem Phys D 1:260–266

    Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    Article  CAS  Google Scholar 

  • Tanji T, Hu X, Weber ANR, Ip YT (2007) Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol Cell Biol 27:4578–4588

    Article  CAS  Google Scholar 

  • Tsakas S, Marmaras V (2010) Insect immunity and its signalling: an overview. ISJ 7:228–238

    Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, Wagner H (2001) Endocytosed HSP60 s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  CAS  Google Scholar 

  • Valanne S, Wang JH, R met M (2011) The Drosophila Toll signaling pathway. J Immunol 186:649–656

    Article  CAS  Google Scholar 

  • Verleyen P, Baggerman G, D’Hertog W, Vierstraete E, Husson SJ, Schoofs L (2006) Identification of new immune induced molecules in the haemolymph of Drosophila melanogaster by 2D-nanoLC MS/MS. J Insect Physiol 52:379–388

    Article  CAS  Google Scholar 

  • Wang J, Wu Y, Yang G, Aksoy S (2009) Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. P Natl Acad Sci USA 106:12133

    Article  CAS  Google Scholar 

  • Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y, Nishimura K, Komai K, Matsuda K (2001) Protein function: chaperonin turned insect toxin. Nature 411:44

    Article  CAS  Google Scholar 

  • Yoshiga T, Georgieva T, Dunkov BC, Harizanova N, Ralchev K, Law JH (1999) Drosophila melanogaster transferrin. Eur J Biochem 260:414–420

    Article  CAS  Google Scholar 

  • Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim MS, Blanot D, Oh BH, Ueda R, Mengin-Lecreulx D, Lemaitre B (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24:463–473

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31071741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiXing Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H., Zeng, H., Yang, X. et al. An insecticidal protein from Xenorhabdus ehlersii stimulates the innate immune response in Galleria mellonella . World J Microbiol Biotechnol 29, 1705–1711 (2013). https://doi.org/10.1007/s11274-013-1333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1333-1

Keywords

Navigation