Skip to main content
Log in

Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm formation is a well-known problem in management of metalworking fluid systems. Due to persistence of microorganisms within biofilms, the reappearance of various species of bacteria, including nontuberculous mycobacteria is often observed after the use of biocides and/or cleaning of delivery systems and replacement of cooling fluid. The aim of this study was to determine the usefulness of the tetrazolium salt assay (MTT assay) for assessing the viability of bacteria in biofilms formed in vitro in fresh and used cutting oils, as well as their susceptibility to antimicrobial biocides. Biofilms were established in the microtiter plate format. The results showed that quantification of formazan, a product of the tetrazolium salt reduction by electron transport system could be used for determination of the propensity of bacteria to form biofilms in these complex media. The use of the assay allows also determination of antimicrobial activity of biocides against biofilms in fresh and used metalworking fluids. Biofilms produced by Gram-negative isolates recovered from field metalworking fluids as well as the wild bacterial communities differed in metabolic activity depending on the type of fresh coolants. The MTT assay has high-throughput potential and can be efficiently used for determination of biofilm-forming capacity of microorganisms from individual machines in metalworking industry. The use of the assay may also guide the selection of the most appropriate biocide to fight these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abate G, Aseffa A, Selassie A, Goshu S, Fekade B, WoldeMeskal D, Miörner H (2004) Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol 42:871–873. doi:10.1128/JCM.42.2.871-873.2004

    Article  CAS  Google Scholar 

  • Atlas RM (1997) In: Parks LC (ed) Handbook of microbiological media, 2nd edn. Boca Raton, FL, CRC Press

  • Bakalova S, Doycheva A, Ivanova I, Groudeva V, Dimkov R (2007) Bacterial microflora of contaminated metalworking fluids. Biotechnol Biotechnol Eq 21:437–441

    Google Scholar 

  • Burton CM, Crook B, Scaife H, Evans GS, Barber CM (2012) Systematic review of respiratory outbreaks associated with exposure to water-based metalworking fluids. Ann Occup Hyg 56:374–388. doi:10.1093/annhyg/mer121

    Article  CAS  Google Scholar 

  • Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products- inspired organosulfur compounds. PLoS ONE 7:e38492. doi:10.1371/journal.pone.0038492

    Article  CAS  Google Scholar 

  • Chang SC, Anderson TI, Bahrman SE, Gruden CL, Khijniak AI, Adriaens P (2005) Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. J Ind Microbiol Biotechnol 32:629–638. doi:10.1007/s10295-005-0238-x

    Article  CAS  Google Scholar 

  • Cook PE, Gaylarde CC (1988) Biofilm formation in aqueous metal working fluids. Int Biodeterior 24:265–270. doi:10.1016/0265-3036(88)90010-3

    Article  Google Scholar 

  • Cyprowski M, Piotrowska M, Zakowska Z, Szadkowska-Stańczyk I (2007) Microbial and endotoxin contamination of water-soluble metalworking fluids. Int J Occup Med Environ Health 20:365–371

    Article  Google Scholar 

  • Dawson CC, Intapa C, Jabra-Rizk MA (2011) “Persisters”: survival at the cellular level. PLoS Pathog 7:e1002121. doi:10.1371/journal.ppat.1002121

    Article  CAS  Google Scholar 

  • Dilger S, Fluri A, Sonntag HG (2005) Bacterial contamination of preserved and non-preserved metalworking fluids. Int J Hyg Environ Health 208:467–476. doi:10.1016/j.ijheh.2005.09.001

    Article  Google Scholar 

  • Falkinham JO (2009) Effects of biocides and other metal removal fluid constituents on Mycobacterium immunogenum. Appl Environ Microbiol 75:2057–2061. doi:10.1128/AEM.02406-08

    Article  CAS  Google Scholar 

  • Furuhata K, Ishizaki N, Fukuyama M (2010) Characterization of heterotrophic bacteria isolated from the biofilm of a kitchen sink. Biocontrol Sci 15:21–25. doi:10.4265/bio.15.21

    Article  CAS  Google Scholar 

  • Gilbert Y, Veillette M, Duchaine C (2010) Metalworking fluids biodiversity characterization. J Appl Microbiol 108:437–449. doi:10.1111/j.1365-2672.2009.04433.x

    Article  CAS  Google Scholar 

  • Kairo SK, Bedwell J, Tyler PC, Carter A, Corbel MJ (1999) Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine 17:2423–2438. doi:10.1016/S0264-410X(99)00023-7

    Article  CAS  Google Scholar 

  • Kapoor R, Yadav JS (2010) Development of a rapid ATP bioluminescence assay for biocidal susceptibility testing of rapidly growing mycobacteria. J Clin Microbiol 48:3725–3728. doi:10.1128/JCM.01482-10

    Article  Google Scholar 

  • Lewandowski R, Kozłowska K, Szpakowska M, Stępińska M, Trafny EA (2010) Use of a foam spatula for sampling surfaces after bioaerosol deposition. Appl Environ Microbiol 76:688–694. doi:10.1128/AEM.01849-09

    Article  CAS  Google Scholar 

  • Lucchesi EG, Eguchi SY, Moraes AM (2012) Influence of a triazine derivative-based biocide on microbial biofilms of cutting fluids in contact with different substrates. J Ind Microbiol Biotechnol 39:743–748. doi:10.1007/s10295-011-1081-x

    Article  CAS  Google Scholar 

  • Marchand G, Lavoie J, Racine L, Lacombe N, Cloutier Y, Bélanger E, Lemelin C, Desroches J (2010) Evaluation of bacterial contamination and control methods in soluble metalworking fluids. J Occup Environ Hyg 7:358–366. doi:10.1080/15459621003741631

    Article  CAS  Google Scholar 

  • Mattsby-Baltzer I, Sandin M, Ahlström B, Allenmark S, Edebo M, Falsen E, Pedersen K, Rodin N, Thompson RA, Edebo L (1989) Microbial growth and accumulation in industrial metal-working fluids. Appl Environ Microbiol 55:2681–2689

    CAS  Google Scholar 

  • Murat JB, Grenouillet F, Reboux G, Penven E, Batchili A, Dalphin JC, Thaon I, Millon L (2012) Factors influencing the microbial composition of metalworking fluids and potential implications for machine operator’s lung. Appl Environ Microbiol 78:34–41. doi:10.1128/AEM.06230-11

    Article  CAS  Google Scholar 

  • Perkins SD, Angenent LT (2010) Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. FEMS Microbiol Ecol 74:643–654

    Article  CAS  Google Scholar 

  • Rabenstein A, Koch T, Remesch M, Brinksmeier E, Kuever J (2009) Microbial degradation of water miscible metal working fluids. Int Biodeterior Biodegradation 63:1023–1029. doi:10.1016/j.ibiod.2009.07.005

    Article  CAS  Google Scholar 

  • Raut U, Rantai S, Narang P, Chauhan DS, Chahar M, Narang R, Mendiratta DK (2012) Comparison of the 3- (4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide tube method with the conventional method and real-time polymerase chain reaction for the detection of rifampicin resistance in Mycobacterium tuberculosis. Indian J Med Microbiol 30:81–84. doi:10.4103/0255-0857.93047

    Article  CAS  Google Scholar 

  • Saha R, Donofrio RS (2012) The microbiology of metalworking fluids. Appl Microbiol Biotechnol 94:1119–1130. doi:10.1007/s00253-012-4055-7

    Article  CAS  Google Scholar 

  • Saha R, Donofrio RS, Goeres DM, Bagley ST (2012) Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization. Appl Microbiol Biotechnol 94:799–808. doi:10.1007/s00253-011-3647-y

    Article  CAS  Google Scholar 

  • Selvaraju SB, Khan IU, Yadav JS (2005) Biocidal activity of formaldehyde and nonformaldehyde biocides toward Mycobacterium immunogenum and Pseudomonas fluorescens in pure and mixed suspensions in synthetic metalworking fluid and saline. Appl Environ Microbiol 71:542–546. doi:10.1128/AEM.71.1.542-546.2005

    Article  CAS  Google Scholar 

  • Selvaraju SB, Khan IU, Yadav JS (2011) Susceptibility of Mycobacterium immunogenum and Pseudomonas fluorescens to formaldehyde and non-formaldehyde biocides in semi-synthetic metalworking fluids. Int J Mol Sci 12:725–741. doi:10.3390/ijms12010725

    Article  CAS  Google Scholar 

  • Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–168. doi:10.1007/978-1-61779-012-6_9

    Article  CAS  Google Scholar 

  • Theaker D, Thompson I (2010) The industrial consequences of microbial deterioration of metal-working fluid. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2642–2650. doi:10.1007/978-3-540-77587-4_196

  • Walencka E, Sadowska B, Różalska S, Hryniewicz W, Różalska B (2005) Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol 54:191–200

    CAS  Google Scholar 

  • Wilson RW, Steingrube VA, Böttger EC, Springer B, Brown-Elliott BA, Vincent V, Jost KC, Zhang Y, Garcia MJ, Chiu SH, Onyi GO, Rossmoore H, Nash DR, Wallace RJ (2001) Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol 51:1751–1764. doi:10.1099/00207713-51-5-1751

    Article  CAS  Google Scholar 

  • Zhao T, Liu Y (2010) N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol 10:140. doi:10.1186/1471-2180-10-140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work for this paper was supported through the project No III.B.05 of the second stage of the Multi-Annual Program: “Improving the Safety and Working Conditions”, funded in 2011–2013 for research and development activities by the Ministry of Science and Higher Education/National Center for Research and Development. Coordinator: Central Institute for Labour Protection—National Research Institute. We thank Agnieszka Wielechowska i Monika Uchańska for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Anna Trafny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trafny, E.A., Lewandowski, R., Zawistowska-Marciniak, I. et al. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids. World J Microbiol Biotechnol 29, 1635–1643 (2013). https://doi.org/10.1007/s11274-013-1326-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1326-0

Keywords

Navigation