Skip to main content
Log in

Isotherm and kinetic models and cell surface analysis for determination of the mechanism of metal sorption by Aspergillus versicolor

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The isolate Aspergillus versicolor was obtained from an estuary, which is exposed to metal contamination. It was found to have a good metal tolerance and sorption capacity. Further studies revealed that the rate of metal removal from solution is very rapid in the first 5–10 min, and is favoured by a pH of 6.0. The biosorption data obtained was explained by the Freundlich adsorption isotherm model and followed a pseudo-second order kinetics reaction. The fungus showed a higher accumulation of fatty acids when grown in presence of metals as compared to the mycelium grown in absence of the metal; there was also an increase in the saturation index of fatty acids in presence of Cu2+ which serves as a protective mechanism for the fungus. Fourier Transform Infrared, scanning electron microscopy and EDAX analysis indicated that metal removal from solution by A. versicolor occurred by a passive adsorption to the fungal cell surface, involving an ion exchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akhtar MN, Sastry KS, Mohan PM (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28

    Google Scholar 

  • Akar T, Tunali S, Çabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–405

    Google Scholar 

  • Akar T, Tunali S (2006). Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour Technol 97:1789–1787

    Google Scholar 

  • Al Abboud MA, Alawlaqi MM (2011) Biouptake of copper and their impact on fungal fatty acids. Aust J Basic Appl Sci 5(11):283–290

    CAS  Google Scholar 

  • Al-Garni S, Ghanem KM, Bahobail AS (2009) Biosorption characteristics of Aspergillus fumigatus in removal of cadmium from an aqueous solution. Afr J Biotechnol 8:4163–4172

    CAS  Google Scholar 

  • Alluri HK, Ronda SR, Settalluri VS, Singh JB, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal. Afr J Biotechnol 6(25):2924–2931

    CAS  Google Scholar 

  • Bairagia H, Khan MMR, Raya L, Guhab AK (2011) Adsorption profile of lead on Aspergillus versicolor: a mechanistic probing. J Hazard Mater 186:756–764

    Article  Google Scholar 

  • Bansal M, Singh D, Garg VK, Rose P (2009) Use of agricultural waste for the removal of nickel ions from aqueous solutions: equilibrium and kinetics studies. Eng Technol 51:431–437

    Google Scholar 

  • Bayramoglu G, Baktas S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101:285–300

    Article  CAS  Google Scholar 

  • Bhatti HN, Samin G, Hanif MA (2008) Enhanced removal of Cu(II) and Pb(II) from aqueous solutions by pretreated biomass of Fusarium solani. J Chin Chem Soc 55:1235–1242

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37: 911–917

    Google Scholar 

  • Bueno BYM, Torem ML, Molina F, De Mesquita LMS (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: Equilibrium and kinetic studies. Miner Eng 21:65–75

    Article  CAS  Google Scholar 

  • Donat R, Akdogan A, Erdem E, Cetisli H (2005) Thermodynamics of Pb2 and Ni2 adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci 286(1):43–52

    Article  CAS  Google Scholar 

  • Dursun AY, Uslu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochem 38:1647–1651

    Article  CAS  Google Scholar 

  • Dursun AY (2006) A comparative study on determination of equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger Biochem. Eng J 28:187–195

    Google Scholar 

  • Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Biotechnol 3(2):035–048

    CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH. Appl Microbiol Biotechnol 37(3):399–403

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegrad 62:195–203

    Article  CAS  Google Scholar 

  • Gazem MAH, Nazareth S (2012) Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Annals Microbiol (Accepted)

  • Goyal N, Jain SC, Banerjee UC (2003) Studies on the microbial adsorption of heavy metals. J Adv Environ Res 7:311–318

    Article  CAS  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2005) Interaction of metal ions with clays: I. A case study with Pb(II). Appl Clay Sci 30(3–4):199–208

    Article  Google Scholar 

  • Hefnawy MA, Ali MI, Abdul-Ghany S (2010) Influence of copper and cobalt stress on membrane fluidity of Stachybotrys chartarum. Can J Pure Appl Sci 4(1):1003–1009

    CAS  Google Scholar 

  • Hefne JA, Mekhemer WK, Alandis NM, Aldayel OA, Alajyan T (2008) Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. Int J Phys Sci 3(11):281–288

    Google Scholar 

  • Ho YS, McKay G (1999) The sorption of lead(II) ions on peat. Water Res 33:578–584

    Article  CAS  Google Scholar 

  • Hussain MA, Salleh A, Milow P (2009) Charactrization of the adsorption of the lead(II) by the nonliving biomass Spirogera neglecta (Hasall) Kutzing. Am J Biochem Biotechnol 5(2):75–83

    Article  CAS  Google Scholar 

  • Iskandar NL, Zainudin NA, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 23(5):824–830

    Article  CAS  Google Scholar 

  • Joo J-H, Hassan SHA, Oh S-E (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegrad 64:734–741

    Article  CAS  Google Scholar 

  • Joo J-H, Hussein KA, Hassan SHA (2011) Biosorptive capacity of Cd(II) and Pb(II) by lyophilized cells of Pleurotus eryngii. Korean J Soil Sci Fert 44(4):615–624

    Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  • Karaca H, Tay T, Kıvanç M (2010) Kinetics of lead ion biosorption from aqueous solution onto lyophilized Aspergillus niveus. Water Pract Technol 5(1):1–10

    Article  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009) Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World J Microbiol Biotechnol 25:1413–1421

    Article  CAS  Google Scholar 

  • Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417

    Article  Google Scholar 

  • Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Biochem Biotechnol 59:382–388

    CAS  Google Scholar 

  • Mukhopadhyay M, Noronha SB, Suraishkumar GK (2007) Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour Technol 98(9):1781–1787

    Article  CAS  Google Scholar 

  • Nazareth S, Marbaniang T (2008) Effect of heavy metals on cultural and morphological growth characteristics of halotolerant Penicillium morphotypes. J Basic Microbiol 48:363–369

    Google Scholar 

  • Oh SE, Hassan SHA, Joo JH (2009) Biosorption of heavy metals by lyophilized cells of Pseudomonas stutzeri. World J Microbiol Biotechnol 25:1771–1778

    Article  CAS  Google Scholar 

  • Ozsoy HD (2010) Biosorptive removal of Hg(II) ions by Rhizopus oligosporus produced from corn-processing wastewater. Afr J Biotechnol 9(51):8783–8790

    CAS  Google Scholar 

  • Paraszkiewicz K, Bernat P, Naliwajski M, Długon′ski J (2010) Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 192:135–141

    Article  CAS  Google Scholar 

  • Parvathi K, Narensh Kumar R, Nagendran R (2007) Biosoprtion of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microbiol Biotechnol 23(5):671–676

    Article  CAS  Google Scholar 

  • Ram AFJ, Arentshorst M, Damveld RA, VanKuyk PA, Klis FM, Van den Hondel C (2004) The cell wall stress response in Aspergillus niger involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfa A) and increased deposition of chitin in the cell wall. Microbiology 4:139–143

    Google Scholar 

  • Say R, Denizli A, Arıca MY (2001) Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70

    Article  CAS  Google Scholar 

  • Seelsaen N, Mclaughlan R, Moore S, Stuetz RM (2007) Influence of compost charactristics on heavy metal sorption from synthetic storm water. Water Sci Technol 55(4):219–226

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation fungal bioremediation. Wiley, Hoboken, NJ, pp 484–532

    Google Scholar 

  • Srivastava S, Thakur IS (2006) Biosorption potency of Aspergillus niger for removal of chromium (VI). Curr Microbiol 53:232–237

    Article  CAS  Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14:291–302

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Volkman JK, Jeffery SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Google Scholar 

  • Wang J-S, Hu X-J, Liu Y-G, Xie S-B, Bao Z-L (2010) Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101:504–508

    Article  CAS  Google Scholar 

  • Yalcin E, Cavusoglu K, Kinalioglu K (2010) Biosorption of Cu2+ and Zn2+ by raw and autoclaved Rocella phycopsis. J Environ Sci 22(3):367–373

    Article  CAS  Google Scholar 

  • Yen G, Viraraghavan T (2003) Heavy metal removal from aquase solution by fungus Mucor rouxii. Water Res 37:4486

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. Majumdar, P. Naik and S. Mirza, National Institute of Oceanography, Goa, India, for the analysis of GC-MS, and to P. Torney, Goa University for the FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Nazareth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazem, M.A.H., Nazareth, S. Isotherm and kinetic models and cell surface analysis for determination of the mechanism of metal sorption by Aspergillus versicolor . World J Microbiol Biotechnol 28, 2521–2530 (2012). https://doi.org/10.1007/s11274-012-1060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1060-z

Keywords

Navigation