Skip to main content
Log in

Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One of the most cultivated and consumed vegetables in Brazil is the common bean, Phaseolus vulgaris L. The symbiosis of this plant species with nitrogen-fixing bacteria that are adapted to the stresses commonly found in tropical soils can increase production. The aim of this study was to evaluate the symbiotic effectiveness of bacterial strains from soils under different land uses in the Amazon region. Further, rhizobia tolerance to acidity and aluminium and the involvement of some possible physiological mechanisms of such tolerance were also investigated. In assessing the efficiency of biological nitrogen fixation, inoculation with strains UFLA04-195, UFLA04-173 and UFLA04-202, belonging to the genus Rhizobium, resulted in greater plant growth, higher shoot nitrogen content and good nodulation compared to the inoculation with the strain CIAT 899 (R. tropici), and to the mineral nitrogen control or Burkholderia fungorum strains that nodulated or not bean plants. These efficient strains grew better at pH 5.0 than at pH 6.0 or pH 6.9; they also tolerated up to 1 mmol l−1 of Al3+ and showed an increased production of exopolysaccharides where the growing rates were less (pH 6.0 and pH 6.9). With respect to aluminium, the highest production of EPS produced greater tolerance to this element. Taken together, these results indicate that the strains evaluated in this study were tolerant to acidity and aluminium; they appeared to have developed resistance mechanisms such as EPS production and a resistant cell outer membrane (indicated by resistance to polymyxin and methyl violet). As these strains also gave increased yields of the host species, further studies on whether to recommend these strains as inoculants are already underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad N, Johri S, Abdin MZ, Qazi GN (2009) Molecular characterization of bacterial population in the forest soil of Kashmir, India. World J Microbiol Biotechnol 25:107–113

    Article  CAS  Google Scholar 

  • Almeida ALG, Alcântara RMCM, Nóbrega RSAE, Abrahão RS, Leite LFC, Silva JAL, Nobrega JCA (2010) Cowpea cv. BR17 Gurguéia yield inoculated with symbiotic diazotrophic bacteria in Piauí. Agrária 5:364–369

    Article  Google Scholar 

  • Arora NK, Khare E, Singh S, Maheshwari DK (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microb Biot 26:811–816

    Article  CAS  Google Scholar 

  • Barberi A, Moreira FMS, Florentino LA, Rodrigues MID (2004) Growth of Bradyrhizobium elkanii strain Br 29 in culture media with different pH values. Ciênc Agrotec 28:397–405

    Article  Google Scholar 

  • Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC, Moreira FMS (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of Leguminosae. Rev Bras Ciênc Solo 35:657–671

    Google Scholar 

  • Bushby HVA (1990) The role of bacterial surface charge in the ecology of root nodule bacteria: a hypothesis. Soil Biol Biochem 22:1–9

    Article  Google Scholar 

  • Chen HC, Richardson AE, Rolfe BG (1993a) Studies on the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 59:1798–1804

    CAS  Google Scholar 

  • Chen HC, Gartner E, Rolfe BG (1993b) Involvement of genes on a megaplasmid in the acid-tolerant phenotype of Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 59:1058–1064

    CAS  Google Scholar 

  • Cole MA, Elkan GH (1973) Transmissible resistance to penicillim G, Neomycin, and cloramphenicol in Rhizobium japonicum. Antimicrob Agents Chemother 4:248–253

    CAS  Google Scholar 

  • CONAB (Companhia Nacional de Abastecimento) (2010) Safra Grãos 2009/2010. Disponível: http://www.conab.gov.br/conabweb/download/safra/FeijaoTotalSerieHist.xls>

  • Correa OS, Barneix AJ (1997) Cellular mechanisms of pH tolerance in Rhizobium loti. World J Microb Biot 13:153–157

    Article  CAS  Google Scholar 

  • Cunningham SD, Munns DN (1984) The correlation between extracellular polysaccharide production and acid tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276

    Article  CAS  Google Scholar 

  • Döbereiner J, Arruda NB, Penteado AF (1966) Evaluation of nitrogen fixation in legumes by regression of N2 on total plant weight of nodules. Pesq Agropec Bras 1:233–237

    Google Scholar 

  • Ferreira DF (2000) Análises estatísticas por meio do SISVAR para windows versão 4.0. In: Reunião anual da Região Brasileira da Sociedade Internacional de Biometria. São Carlos. programas e Resumos… UFSCar, 45:235

  • Fred EB, Waksman SA (1928) Laboratory manual of general microbiology. McGraw-Hill Book, New York, p 143

    Google Scholar 

  • Fujihara S, Yoneyama DT (1993) Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii p220 and Bradyrhizobium japonicum A 1017. Appl Environ Microbiol 59:1104–1109

    CAS  Google Scholar 

  • González TO, Campanharo JC, Lemos EGM (2008) Genetic characterization and nitrogen fixation capacity of Rhizobium strains on common bean. Pesq Agropec Bras 43:1177–1184

    Article  Google Scholar 

  • Goss TJ, O’hara GW, Dilworth MJ, Glenn AR (1990) Cloning, characterization, and complementation of lesions causing acid sensitivity in Tn5-induced mutants of Rhizobium meliloti WSM419. J Bacteriol 172:5173–5179

    CAS  Google Scholar 

  • Graham PH, Draeger K, Ferrey ML, Conroy MJ, Hammer BE, Martinez E, Naarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    Article  CAS  Google Scholar 

  • Hara FAZ, Oliveira LA (2004) Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos e álicos de Presidente Figueiredo, Amazonas. Acta Amazon 34:343–357

    Article  Google Scholar 

  • Hara FAZ, Oliveira LA (2005) Características fisiológicas e ecológicas de rizóbios oriundos de solos ácidos de Iranduba, Amazonas. Pesq Agropec Bras 40:667–672

    Article  Google Scholar 

  • Hickey EW, Hirshfield IN (1990) Low-pH-induced effects on patterns of protein synthesis and on internal pH in Escherichia coli and Salmonella typhimurium. Appl Environ Microbiol 56:1038–1045

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agricultural Experiment Station, Berkeley, p 32

    Google Scholar 

  • Igual JM, Rodriguez-Barrueco C, Cervantes E (1997) The effects of aluminum on nodulation and symbiotic nitrogen fixation in Casuarina cunningamiana Miq. Plant Soil 190:41–46

    Article  CAS  Google Scholar 

  • Johnson AC, Wood M (1990) DNA, a possible site of action of aluminum in Rhizobium spp. Appl Environ Microbiol 56:3629–3633

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kingsley MT, Bohlool BB (1992) Extracelular polysaccharide is not responsible for aluminum tolerance of Rhizobium leguminosarum bv. phaseoli CIAT899. Appl Environ Microbiol 58:1095–1101

    CAS  Google Scholar 

  • Lacerda AM, Moreira FMS, Andrade MJB, Soares ALL (2004) Yield and nodulation of cowpea inoculated with selected rhizobia strains. Rev Ceres 51:67–82

    Google Scholar 

  • Lane DJ (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, Wiley, New York, pp 115–148

  • Leyer GJ, Johnson EA (1993) Acid adaptation induces crossprotection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol 59:1842–1847

    CAS  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Lima AS, Nóbrega RSA, Barberi A, Silva K, Ferreira DF, Moreira FMS (2009) Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant Soil 320:1–19

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira AS (1997) Avaliação do estado nutricional de plantas: princípios e aplicações, 2 edn. Potafos

  • Miguel DL, Moreira FMS (2001) Influence of médium and peat pH on the behaviour of Bradyrhizobium strains. R Bras Ci Solo 25:873–883

    Google Scholar 

  • Miles AA, Misra SS (1938) The estimations of the bacteriocidal power of the blood. J Hyg 38:732–749

    Article  CAS  Google Scholar 

  • Moreira FMS, Silva MF, Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570

    Article  Google Scholar 

  • Muglia CI, Grasso DH, Aguilar OM (2007) Rhizobium tropici response to acidity involves activation of glutathione synthesis. Microbiol 153:1286–1296

    Article  CAS  Google Scholar 

  • Mukherjee SK, Asanuma S (1998) Possible role of cellular phosphate pool and subsequent accumulation of inorganic phosphate on the aluminum tolerance in Bradyrhizobium japonicum. Soil Biol Biochem 30:1511–1516

    Article  CAS  Google Scholar 

  • O’hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876

    Google Scholar 

  • Osman O, Tanguichi H, Ikeda K, Park P, Tanabe-Hosoi S, Nagata S (2010) Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake. Egypt. J App Microbiol 108:1459–1470

    Article  CAS  Google Scholar 

  • Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE (2007) Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 103:2299–2308

    Article  CAS  Google Scholar 

  • Ramalho MAP, Abreu AFB, Carneiro JES, Goncalves FMA, Santos JB, Peloso MJD, Faria LC, Carneiro GES (2002) O “Talismã” de sua Lavoura de Feijoeiro. EMBRAPA/CNPAF 4

  • Riccillo PM, Muglia CI, Bruijn FJ, Roe AJ, Booth IR, Aguilar OM (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ, Djordjevic MA, Rolfe BJ (1988) Expression of nodulation genes in Rhizobium leguminosarum bv. trifolii is affected by low pH and by Ca21 and Al ions. Appl Environ Microbiol 54:2541–2548

    CAS  Google Scholar 

  • Rodrigues CS, Laranjo M, Oliveira S (2006) Effect of Heat and pH Stress in the Growth of Chickpea Mesorhizobia. Curr Microbiol 53:1–7

    Article  CAS  Google Scholar 

  • Rojas-Jiménez K, Sohlenkamp C, Geiger O, Martínez-Romero E, Werner D, Vinuesa P (2005) A ClC chloride channel homolog and ornithine-containing membrane lipids of rhizobium tropici ciat899 are involved in symbiotic efficiency and acid tolerance. Mol Plant Microbe Interact 18:1175–1185

    Article  Google Scholar 

  • Sarruge JR, Haag HP (1979) Análises químicas em plantas. ESALQ/USP, 27

  • Scott AJ, Knott MA (1974) Cluster analysis method for grouping means in the analysis of variance. Biometrics 30:507–512

    Article  Google Scholar 

  • Soares ALL, Pereira JPAR, Ferreira PAA, Vale HMM, Lima AS, Andrade MJB, Moreira FMS (2006a) Agronomic efficiency of selected rhizobia strains and diversity of native nodulating populations in Perdões (MG—Brazil). I—cowpea. R Bras Ci Solo 30:795–802

    CAS  Google Scholar 

  • Soares ALL, Ferreira PAA, Pereira JPAR, Vale HMM, Lima AS, Andrade MJB, Moreira FMS (2006b) Agronomic efficiency of selected rhizobia strains and diversity of native nodulating populations in Perdões (MG—Brazil). II—Beans. R Bras Ci Solo 30:803–811

    CAS  Google Scholar 

  • Talbi C, Delgado MJ, Girard L, Ramírez-Trujillo A, Caballero-Mellado J, Bedmar EJ (2010) Burkholderia phymatum Strains Capable of Nodulating Phaseolus vulgarisAre Present in Moroccan Soils. Appl Environ Microbiol 76:4587–4591

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Vargas AAT, Denardin ND (1992) Tolerance to acidity and soil aluminum by rhizobia strains of beans isolated in São Paulo state, Brazil. R Bras Ci Solo 16:337–342

    CAS  Google Scholar 

  • Vargas LK, Lisboa BB, Scholles D, Silveira JRP, Jung GC, Granada CE, Nevesa G, Braga MM, Negreiros T (2007) Genetic diversity and symbiotic efficiency of black wattle nodulating rhizobia in soils of Rio Grande do Sul State, Brazil. R Bras Ci Solo 31:647–654

    Article  CAS  Google Scholar 

  • Vieira C (2006) Adubação mineral e calagem. In: Vieira C, Paula Jr TJ, Borém A (eds.) Feijão, 2 edn. Atual.—Viçosa: Ed. UFV, pp 115–142

  • Watkin ELJ, O`Hara GW, Glenn AR (2003) Physiological responses to acid stress of an acid-soil tolerant and acid-soil sensitive strain of Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 35:621–624

    Article  CAS  Google Scholar 

  • Wood M (1995) A mechanism of aluminum toxicity to soil bacteria and possible ecological implications. Plant Soil 171:63–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fapemig and CNPq for student fellowships, CNPq for a research fellowship and grant, and project GEF/UNEP-GF2715-02 (CSM-BGBD) for financial support. This publication presents part of the findings of the international project “Conservation and Management of Below-Ground Biodiversity” implemented in seven tropical countries—Brazil, Cote d’Ivoire, India, Indonesia, Kenya, Mexico, and Uganda. This project is coordinated by the Tropical Soil Biology and Fertility Institute of CIAT (TSBF-CIAT with co-financing from the Global Environmental Facility (GEF), and implementation support from the United Nations Environment Program (UNEP). Universidade Federal de Lavras was the Brazilian executing agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Maria de Souza Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avelar Ferreira, P.A., Bomfeti, C.A., Lima Soares, B. et al. Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World J Microbiol Biotechnol 28, 1947–1959 (2012). https://doi.org/10.1007/s11274-011-0997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0997-7

Keywords

Navigation