Skip to main content
Log in

An efficient way from naringenin to carthamidine and isocarthamidine by Aspergillus niger

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotransformation of naringenin with Aspergillus niger CGMCC 3.4628 yielded two hydroxylation products which were identified unambiguously as 6-hydroxylnaringenin (carthamidin) and 8-hydroxylnaringenin (isocarthamidin) by ESI–MS and 1H-NMR. Both products simultaneously arrived at high level after 48 h in the biotransformation process. The highest conversion efficiency of carthamidin was 0.38 mg/mg of naringenin and that of isocarthamidin was 0.43 mg/mg of naringenin. Antioxidant property assay using a thin layer chromatography-bioautographic-based DPPH scavenging method demonstrated that both hydroxylation metabolites exhibited much stronger activity than naringenin. The high efficiency and convenient procedure makes the biotransformation with A. niger described in current work a potential way to produce carthamidin and isocarthamidin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1:569–590

    Article  CAS  Google Scholar 

  • Goh D, Lee YH, Ong ES (2005) Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Agric Food Chem 53:8197–8204

    Article  CAS  Google Scholar 

  • Gu L, Wu T, Wang Z (2009) TLC bioautography-guided isolation of antioxidants from fruit of Perilla frutescens var. acuta. LWT-Food Sci Technol 42:131–136

    Article  CAS  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  Google Scholar 

  • Hodek P, Trefil P, Stiborova M (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem-Biol Interact 139:1–21

    Article  CAS  Google Scholar 

  • Horvath CR, Martos PA, Saxena PK (2005) Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant Huang-qin (Scutellaria baicalensis Georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J Chromatogr A 1062:199–207

    Article  CAS  Google Scholar 

  • Iwashita K, Kobori M, Yamaki K, Tsushida T (2000) Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotech Biochem 64:1813–1820

    Article  CAS  Google Scholar 

  • Jin Y, Xiao Y, Zhang F, Xue X, Xu Q, Liang X (2008) Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry. J Pharmaceut Biomed 46:418–430

    Article  CAS  Google Scholar 

  • Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M (1999) Quantitation of flavonoid constituents in citrus fruits. J Agric Food Chem 47:3565–3571

    Article  CAS  Google Scholar 

  • Kuo SM (1996) Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett 110:41–48

    Article  CAS  Google Scholar 

  • Miyake Y, Yamamoto K, Morimitsu Y, Osawa T (1998) Characteristics of antioxidative flavonoid glycosides in lemon fruit. Food Sci Technol Int 4:48–53

    CAS  Google Scholar 

  • Miyake Y, Minato K, Fukumoto S, Yamamoto K, Oya-Ito T, Kawakishi S, Osawa T (2003) New potent antioxidative hydroxyflavanones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit. Biosci Biotech Biochem 67:1443–1450

    Article  CAS  Google Scholar 

  • Obara H, Onodera J, Kurihara Y, Yamamoto F (1978) Synthesis of 2′,3′,4,4′,6′-pentahydroxychalcone, an aglycone of carthamin, and its isomerization into 4′,5,6,7-and 4′,5,7,8-tetrahydroxyflavanone, carthamidin and isocarthamidin. B Chem Soc Jpn 51:3627–3630

    Article  CAS  Google Scholar 

  • Tiwari AK (2001) Imbalance in antioxidant defense and human diseases: multiple approach of natural antioxidants therapy. Curr Sci 81:1179–1187

    CAS  Google Scholar 

  • Werawattanachai N, Kaewamatawong R (2010) Chemical constituents from Parinari anamense. Biochem Syst Ecol 38:836–838

    Article  CAS  Google Scholar 

  • Wu JH, Wang XH, Yi YH, Lee KH (2003) Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett 13:1813–1815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 30973878). We gratefully thank Professor Gui-Xin Chou for providing the compounds and Miss Li-Hua Gu for the help in the antioxidant activity assay.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Juan Zhao or Zheng-Tao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Yang, L., Zhao, SJ. et al. An efficient way from naringenin to carthamidine and isocarthamidine by Aspergillus niger . World J Microbiol Biotechnol 28, 1803–1806 (2012). https://doi.org/10.1007/s11274-011-0934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0934-9

Keywords

Navigation