Skip to main content
Log in

Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new actinomycete strain designated TN256, producing antimicrobial activity against pathogenic bacteria and fungi, was isolated from a Tunisian Saharan soil. Morphological and chemical studies indicated that strain TN256 belonged to the genus Streptomyces. Analysis of the 16S rDNA sequence of strain TN256 showed a similarity level ranging between 99.79 and 97.8% within Streptomyces microflavus DSM 40331T and Streptomyces griseorubiginosus DSM 40469T respectively. The comparison of its physiological characteristics showed significant differences with the nearest species. Combined analysis of the 16 S rRNA gene sequences (FN687758), fatty acids profile, and results of physiological and biochemical tests indicated that there were genotypic and phenotypic differentiations of that isolate from other Streptomyces species neighbours. These date strongly suggest that strain TN256 represents a novel species with the type strain Streptomyces TN256 (=CTM50228T). Experimental validation by DNA–DNA hybridization would be required for conclusive confirmation. Four active products (1–4) were isolated from the culture broth of Streptomyces TN256 using various separation and purification steps and procedures. 1: N-[2-(1H-indol-3-yl)-2 oxo-ethyl] acetamide ‘alkaloid’ derivative; 2: di-(2-ethylhexyl) phthalate, a phthalate derivative; 3: 1-Nonadecene and 4: Cyclo (l-Pro-l-Tyr) a diketopiperazine ‘DKP’ derivative. The chemical structure of these four active compounds was established on the basis of spectroscopic studies NMR and by comparing with data from the literature. According to our biological studies, we showed in this work that the pure compounds (1–4) possess antibacterial and antifungal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Bari MAA, Abu Sayeed M, Rahman MS, Mossadik MA (2006) Characterization and antimicrobial activities of a phthalic acid derivative produced by Streptomyces bangladeshiensis a novel species collected in Bangladesh. Res J Medicinal Med Sci 1:77–81

    Google Scholar 

  • Athalye M, Goodfellow M, Lacey J, White RP (1985) Numerical classification of Actinomadura and Nocardiopsis. Int J Syst Evol Microbiol 35:86–98

    Google Scholar 

  • Ben Ameur Mehdi R, Mellouli L, Chabchoub F, Fotso S, Bejar S (2004) Purification and structure elucidation of two biologically active molecules from a new isolated Streptomyces sp. US24 strain. Chem Nat Comp 40:510–513

    Article  Google Scholar 

  • Ben Ameur Mehdi R, Sioud S, Fourati Ben Fguira L, Bejar S, Mellouli L (2006) Purification and structure determination of four bioactive molecules from a newly isolated Streptomyces sp. TN97 strain. Process Biochem 41:1506–1513

    Article  CAS  Google Scholar 

  • Chatterjee S, Vijayakumar EK, Franco CM, Maurya R, Blumbach J, Ganguli BN (1995) Phencomycin, a new antibiotic from a Streptomyces species HIL Y-9031725. J Antibiot (Tokyo) 48:1353–1354

    CAS  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Covan ST, Steel KJ (1974) Manual for identification of medical bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Elleuch L, Shaaban M, Smaoui S, Mellouli L, Karray-Rebai I, Fourati Ben Fguira L, Shaaban KA, Laatsch H (2010) Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl Biochem Biotechnol 162:579–593

    Article  CAS  Google Scholar 

  • El-Naggar MYM (1997) Dibutyl phthalte and the antitumor agent F5A1, two metabolites produced by Streptomyces nasri submutant H35. Biomed Lett 55:125–131

    CAS  Google Scholar 

  • El-Sakhawy FS, El-Tantawy ME, Ross SA, El-Sohly MA (1998) Composition and antimicrobial activity of the essential oil of Murraya exotica. Flavour Frag J 13:59–62

    Article  CAS  Google Scholar 

  • Felsentein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ge Y, Huang X, Wang S, Zhang X, Xu Y (2004) Phenazine-1- carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett 237:41–47

    Article  CAS  Google Scholar 

  • Gebhardt K, Schimana J, Krastel P, Dettner K, Rheinheimer J, Zeeck A, Fiedler H (2002) Endophenazines A-D, New phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 55:794–800

    CAS  Google Scholar 

  • Gordon RE, Barnett DA (1977) Resistance to rifampin and lysozyme of strains of some species of Mycobacterium and Nocardia as a taxonomic tool. Int J Syst Evol Microbiol 27:176–178

    CAS  Google Scholar 

  • Gordon RE, Barnett DA, Handarhan JE, Hor-Nay-Pang C (1974) Nocardia coeliaca, Nocardia autotrophica and the nocardin strains. Int J Syst Evol Microbiol 24:54–63

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schremph H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  • Kenneth LK (1958) Prepared research paper RP 2911, central natations for the revised ISCC-NBS color name blocks. J Res NBS 16:427

    Google Scholar 

  • Kim SB, Goodfellow M (2002) Streptomyces avermitilis sp. nov., a taxonomic home for the avermectin-producing streptomycetes. Int J Syst Evol Microbiol 52:2011–2014

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Kroppenstedt R, Stackebrandt EM, Goodfellow M (1990) Taxonomic revision of the actinomycete genera Actinomudura and Microtetruspora. Syst Appl Microbiol 13:148–160

    Article  CAS  Google Scholar 

  • Lanoot B, Vancanneyt M, Dawyndt P, Crockaert M, Zhang J, Huang Y, Liu Z, Swings J (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. columbiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27:84–92

  • Lechevalier MP, Lechevalier HA (1970a) Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. In: Prauser H (ed) The Actinomycetales. G. Fisher Verlag, Jena, pp 311–316

    Google Scholar 

  • Lechevalier HA, Lechevalier MP (1970b) A critical evaluation of genera of aerobic actinomycetes. In: Prauser H (ed) The Actinomycetales. G. Fisher Verlag, Jena, pp 393–405

    Google Scholar 

  • Lee KH, Kim JH, Lim DS, Kim CH (2000) Anti-leukaemic and antimutagenic effects of di (2-ethylhexyl) phthalate isolated from Aloe linne. J Pharm Pharmacol 52:593–598

    Article  CAS  Google Scholar 

  • Liu Z, Shi Y, Zhang Y, Zhou Z, Lu Z, Li W, Rodriguez C, Goodfellow M (2005) Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of ‘Microstreptospora cinerea’ to the genus Streptomyces as Streptomyces yanii sp. nov. Int J Syst Evol Microbiol 55:1605–1610

    Article  CAS  Google Scholar 

  • Magyar A, Zhang X, Abdi F, Kohn H, Widger W (1999) Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant Rho proteins. J Biol Chem 274:7316–7324

    Article  CAS  Google Scholar 

  • Makhija SN, Vavia PR (2003) Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine I. Cellulose acetate as a semipermeable membrane. J Control Release 89:5–18

    Article  CAS  Google Scholar 

  • Marchetti L, Sabbieti MG, Menghi M, Materazzi S, Hurley MM, Manghi G (2002) Effects pf phtalate esters on actin cytoskeleton of Py1a rat osteoblasts. Histol Histopathol 17:1061–1066

    CAS  Google Scholar 

  • Mellouli L, Ameur Mehdi RB, Sioud S, Salem M, Bejar S (2003) Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res Microbiol 154:345–352

    Article  CAS  Google Scholar 

  • Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and relatedtaxa. J Appl Bacteriol 47:87–95

    Article  CAS  Google Scholar 

  • Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach. Actinomycetologica 7:100–106

    Article  Google Scholar 

  • Pusecker K, Laatsch H, Helmke E, Weyland H (1997) Dihydrophencomycin methyl ester, a new phenazine derivative from a marine Streptomycete. J Antibiot 50:479–483

    CAS  Google Scholar 

  • Rhee KH (2002) Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J Gen Appl Microbiol 48:321–327

    Article  CAS  Google Scholar 

  • Roy RN, Laskar S, Sen SK (2006) Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res 161:121–126

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook JE, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 20:1–6

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Sierra G (1957) A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Anton Leeuw Int J G 23:15–22

    Article  CAS  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to the identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4888

    Article  Google Scholar 

  • Tsukamura M (1966) Adansonian classification of mycobacteria. J Gen Microbiol 45:253–273

    CAS  Google Scholar 

  • Vining LC (1992) Secondary metabolism, inventive evolution and biochemical diversity-a review. Gene 115:135–140

    Article  CAS  Google Scholar 

  • Voelker F, Altaba S (2001) Nitrogen source governs the patterns of growth and pristinamycin production in ‘Streptomyces pristinaespiralis’. Microbiology 147:2447–2459

    CAS  Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  Google Scholar 

  • Williams ST, Cross T (1971) Isolation, purification, cultivation and preservation of actinomycetes. Methods Microbiol 4:295–334

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  Google Scholar 

  • Williams ST, Sharpe ME, Holt JG (1989) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins Company, Baltimore

    Google Scholar 

  • Yassa N, Masoomi F, Rohani Rankouhi SE, Hadjiakhoondi A (2009) Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of Guilan. DARU 3:175–180

    Google Scholar 

Download references

Acknowledgments

This work was supported by the CMCU project No: 06/S 0901 “MELLOULI/AIGLE” 2006–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mellouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smaoui, S., Mathieu, F., Elleuch, L. et al. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J Microbiol Biotechnol 28, 793–804 (2012). https://doi.org/10.1007/s11274-011-0872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0872-6

Keywords

Navigation