Skip to main content
Log in

Thermostable invertases from Paecylomyces variotii produced under submerged and solid-state fermentation using agroindustrial residues

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40°C for 72 h and 96 h, respectively. Addition of glucose or fructose (≥1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)2HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS–PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60°C and 4.0–4.5, respectively. Both invertases were stable for 1 h at 60°C with half-lives of 10 min at 70°C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters Km and Vmax for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams PR (1990) Mycelial amylase activities of thermophilic species of Rhizomucor, Humicola and Papulospora. Mycopathologia 112:35–37

    Article  Google Scholar 

  • Alegre ACP, Polizeli MLTM, Terenzi HF, Jorge JA, Guimarães LHS (2009) Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustral residues as carbon source. Braz J Microbiol 40:612–622

    Article  CAS  Google Scholar 

  • Belcarz A, Ginalska G, Lobarzewski J, Penel C (2002) The novel non-glycosylated invertase from Candida utilis (the properties and the conditions of production and purification). Biochim Biophys Acta 1594:40–53

    Article  CAS  Google Scholar 

  • Bhatti HN, Asgher M, Abbas A, Nawaz R, Sheiki MA (2006) Studies on kinetics and thermostability of a novel acid invertase from Fusarium solani. J Agric Food Chem 54:4617–4623

    Article  CAS  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant protein, RNA and DNA in polyacrylamide gels. Electrophoresis 8(2):93–99

    Article  CAS  Google Scholar 

  • Chaudhuri A, Bharadwaj G, Maheshwari R (1999) An unusual pattern of invertase activity development in the thermophilic fungus Thermomyces lanuginosus. FEMS Microbiol Lett 177:39–45

    Article  CAS  Google Scholar 

  • Chen J, Saxton J, Hemming FW, Peberdy JF (1996) Purification and partial characterization of the high and low molecular weight (S- and F-form) of invertase secreted by Aspergillus nidulans. Biochim Biophys Acta 1296:207–218

    Article  Google Scholar 

  • Chen J, Chen X, Xu X, Ning Y, Jin Z, Tian Y (2011) Biochemical characterization of an intracellular 6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production of neo-fructooligosaccharides (neo-FOSs). Bioresour Technol 102:1715–1721

    Article  CAS  Google Scholar 

  • Daniel RM (1996) The upper limits of enzyme thermal stability. Enzyme Microbial Technol 19:74–79

    Article  CAS  Google Scholar 

  • Denisson SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61–71

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dynesen J, Smits HP, Olsson L, Nielsen J (1998) Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl Microbiol Biotechnol 50:579–582

    Article  CAS  Google Scholar 

  • Ettalibi M, Baratti JC (1987) Purification, properties and comparison of invertase, exoinulinase and endoinulinase of Aspergillus ficuum. Appl Microbiol Biotechnol 26:13–20

    Article  CAS  Google Scholar 

  • Goosen C, Yuan XL, van Munster JM, Ram AF, van der Maarel MJ, Dijkhuizen L (2007) Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity. Eukaryot Cell 6:674–681

    Article  CAS  Google Scholar 

  • Guimarães LHS, Terenzi HF, Polizeli MLTM, Jorge JA (2007) Production and characterization of a thermostable extracellular of β-fructofuranosidases by Aspergillus ochraceus using agroindustral residues as carbon source. Enzyme Microbial Technol 42:52–57

    Article  Google Scholar 

  • Guimarães LHS, Somera AF, Terenzi HF, Polizeli MLTM, Jorge JA (2009) Production of β-fructofuranosidases by Aspergillus niveus using agroindustrial residues as carbon sources: characterization of an intracellular enzyme accumulated in the presence of glucose. Process Biochem 44:237–241

    Article  Google Scholar 

  • Hatakeyama Y, Takeda H, Ooi T, Kinoshita S (1996) Kinetic parameters of β-fructofuranosidase from Scopulariopsis brevicaulis. J Ferment Bioeng 81(6):518–523

    Article  CAS  Google Scholar 

  • Khanna P, Sundari SS, Kumar NJ (1995) Production, isolation and partial purification of xylanase from Aspergillus sp. World J Microbiol Biotechnol 11:242–243

    Article  CAS  Google Scholar 

  • Kurakake M, Ogawa K, Sugie M, Takemura A, Sugiura K, Komaki T (2008) Two types of β-fructofuranosidases from Aspergillus oryzae KB. J Agric Food Chem 56:591–596

    Article  CAS  Google Scholar 

  • L’Hocine L, Wang Z, Jiang B, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. J Biotechnol 81:73–84

    Article  Google Scholar 

  • Laemmili UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 222:680–685

    Article  Google Scholar 

  • Leite RSR, Alves-prado HF, Cabral H, Pagnocca FC, Gomes E, Da-Silva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb Technol 43:391–395

    Article  CAS  Google Scholar 

  • Leone FA, Baranauskas JA, Ciancaglini P (1995) Enzyplot: a microcomputer-assisted program for teaching enzyme kinetics. Biochem Educ 23:35–37

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:427–429

    Google Scholar 

  • Mitchell DA (1992) Solid substrate cultivation. Elsevier, London, pp 17–20

    Google Scholar 

  • Nishizawa M, Maruyama Y, Nakamura M (1980) Purification and characterization of invertase isoenzymes from Fusarium oxysporum. Agric Biol Chem 44:489–498

    Article  CAS  Google Scholar 

  • Pérez-Guerra N, Torrado-Agrasar A, López-Macias C, Pastrana L (2003) Main characteristics and applications of solid substrate fermentation. Elect J Environ Agric Food Chem 2(3):343–350

    Google Scholar 

  • Rashad MM, Nooman MU (2009) Production, purification and characterization of extracellular invertase from Saccharomyces cerevisiae NRRL Y-12632 by solid-state fermentation of red carrot residue. Aust J Basic Appl Sci 3(3):1910–1919

    CAS  Google Scholar 

  • Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-d-xylosidase produced by thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 259:156–160

    Article  Google Scholar 

  • Rubio MC, Navarro AR (2006) Regulation of invertase synthesis in Aspergillus niger. Enzyme Microbial Technol 39(4):601–606

    Article  CAS  Google Scholar 

  • Rubio MC, Runco R, Navarro AR (2002) Invertase from a strain of Rhodotorula glutinis. Phytochemistry 61:605–609

    Article  CAS  Google Scholar 

  • Rustiguel CBR, Terenzi HF, Jorge JA, Guimarães LHS (2010) A novel silver-activated extracellular β-d-fructofuranosidase from Aspergillus pnoenicis. J Mol Cat B Enzym 67:10–15

    Article  CAS  Google Scholar 

  • Shafiq K, Ali S, ul-Haq I (2002) Effect of different mineral nutrients on invertase production by Saccharomyces cerevisae GCB-K5. Biotechnology 1:40–44

    Article  Google Scholar 

  • Shaheen I, Bhatti HN, Ashraf T (2008) Production, purification and thermal characterization of invertase from a newly isolated Fusarium sp. under solid-state fermentation. Int J Food Sci Technol 43:1152–1158

    Article  CAS  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7

    Article  CAS  Google Scholar 

  • Vogel HF (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  • Wang L, Zhou H (2006) Aspergillus japonicus JN19 producing beta-fructofuranosidase and characterization of the enzyme. J Food Biochem 30:641–658

    Article  Google Scholar 

  • Warchol M, Perrin S, Grill JP, Scheneider F (2002) Characterization of a purified β-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Lett Appl Microbiol 35:462–467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support and Prof. Dr. Carlos Alberto Labate from ESALQ-USP for the MS analysis. We also thank Maurício de Oliveira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Henrique Souza Guimarães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldo, M.A., da Silva, T.M., Salvato, F. et al. Thermostable invertases from Paecylomyces variotii produced under submerged and solid-state fermentation using agroindustrial residues. World J Microbiol Biotechnol 28, 463–472 (2012). https://doi.org/10.1007/s11274-011-0837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0837-9

Keywords

Navigation