Skip to main content
Log in

Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To explore new approaches of phage-based bio-process of specifically pathogenic Escherichia coli bacteria in food products within a short period. One hundred and forty highly lytic designed coliphages were used. Escherichia coli naturally contaminated and Enterohemorrhagic Escherichia coli experimentally inoculated samples of lettuce, cabbage, meat, and egg were used. In addition, experimentally produced biofilms of E. coli were tested. A phage concentration of 103 PFU/ml was used for food products immersion, and for spraying of food products, 105 PFU/ml of a phage cocktail was used by applying a 20-s optimal dipping time in a phage cocktail. Food samples were cut into pieces and were either sprayed with or held in a bag immersed in lambda buffer containing a cocktail of 140 phages. Phage bio-processing was successful in eliminating completely E. coli in all processed samples after 48 h storage at 4°C. Partial elimination of E. coli was observed in earlier storage periods (7 and 18 h) at 24° and 37°C. Moreover, E. coli biofilms were reduced >3 log cycles upon using the current phage bio-processing. The use of a phage cocktail of 140 highly lytic designed phages proved highly effective in suppressing E. coli contaminating food products. Proper decontamination/prevention methods of pathogenic E. coli achieved in this study can replace the current chemically less effective decontamination methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CE:

Complete eradication

CEH:

Coliphage enterohemorrhagic

EH:

Enterohemorrhagic

EHEC:

Enterohemorrhagic Escherichia coli

LR:

Log reduction

PK:

Phage killing

SE:

Standard error

References

  • Abedon ST (2009) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6:807–815

    Article  Google Scholar 

  • Alisky J, Iczkowski K, Rapoport A, Troitsky N (1998) Bacteriophages show promise as antimicrobial agents. J Infect 36:5–15

    Article  CAS  Google Scholar 

  • Armitage GC (2004) Basic features of biofilms-why are they difficult therapeutic targets? Ann R Australas Coll Dent Surg 17:30–34

    Google Scholar 

  • Bakker MI, Baas WJ, Sijm DTHM, Kolloffel C (1998) Leaf wax of Lactuca sativa and Plantago major. Phytochemistry 47:1489–1493

    Article  CAS  Google Scholar 

  • Barrera O, Rodriguez-Calleja JM, Santos JA, Otero A, Garcia-Lopez ML (2007) Effect of different storage conditions on E. coli O157: H7 and the indigenous bacterial microflora on lamb meat. Int J Food Microbiol 115:244–251

    Article  Google Scholar 

  • Barrow PA, Soothill JS (1997) Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Genet 5:268–271

    CAS  Google Scholar 

  • Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    Article  CAS  Google Scholar 

  • Bigwood T, Hudson JA, Billington C (2009) Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS Microbiol Lett 291:59–64

    Article  CAS  Google Scholar 

  • Brandl M, Amundson R (2008) Leaf age as a risk factor in the contamination of lettuce with Escherichia coli O157: H7 and Salmonella enterica. Appl Environ Microbiol 74:2298–2306

    Article  CAS  Google Scholar 

  • Carey-Smith GV, Billington C, Cornelius AJ, Hudson JA, Heinemann JA (2006) Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol Lett 258:182–186

    Article  CAS  Google Scholar 

  • Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47:267–274

    CAS  Google Scholar 

  • Denyer SP, Jassim SAA, Stewart GSAB (1991) In vivo bioluminescence for studying the adhesion of bacteria. Biofouling 5:125–132

    Article  Google Scholar 

  • Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17:66–72

    Article  CAS  Google Scholar 

  • Drake D (2001) Assessment of antimicrobial activity against biofilms. In: Doyle RJ (ed) Microbial growth in biofilms, vol 2. Academic press, London, pp 373–375

    Google Scholar 

  • Favrin SJ, Jassim SAA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157: H7 in food. Int J Food Microbiol 85:63–71

    Article  Google Scholar 

  • Greer GG (2005) Bacteriophage control of foodborne bacteriat. J Food Prot 68:1102–1111

    Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    Article  CAS  Google Scholar 

  • Hawker J, Begg NB, Blair B, Reintjes R, Weinberg J (2001) Communicable disease control handbook. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Hibma AM, Jassim SAA, Griffiths MW (1997) Infection and removal of L-forms of listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207

    Article  CAS  Google Scholar 

  • Huang J, McAuslane HJ, Nuessly GS (2003) Effect of leaf surface extraction on palatability of romaine lettuce to diabrotica balteata. Entomologia Experimentalis et Applicata 106:227–234

    Article  Google Scholar 

  • Jassim SAA (1996) The effect of lactic acid sanitizer treatment on Listeria monocytogenes L-form biofilms on food and clinical contact surfaces. Food Quality magazine September pp 50–53

  • Jassim SAA, Hibma AM, Griffiths MW (2005) The attachment efficiency of cell-walled and L-forms of Listeria monocytogenes to stainless steel. J Food, Agri Environ 3:92–95

    Google Scholar 

  • Jassim SAA, Abdulamir AS, Abu Bakar F (2010) Methods for bacteriophage design. WO/2010/064044 http://www.wipo.int/pctdb/en/wo.jsp?WO=2010064044

  • Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nature Rev Microbiol 2:123–140

    Article  CAS  Google Scholar 

  • Kim SH, Wei CI (2007) Biofilm formation by multidrug-resistant Salmonella enterica serotype typhimurium phage type DT104 and other pathogens. J Food Prot 70:22–29

    CAS  Google Scholar 

  • Knezevic P, Petrovic O (2008) A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J Microbiol Methods 74:114–118

    Article  CAS  Google Scholar 

  • Koseoglua H, Aslana G, Esenb N, Bilge Senc H, Coban H (2006) Ultrastructural stages of biofilm development of Escherichia coli on urethral catheters and effects of antibiotics on biofilm formation. J Urol 6:942–946

    Google Scholar 

  • Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ (1999) Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol 65:3767–3773

    CAS  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519–4526

    Article  CAS  Google Scholar 

  • Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67:1682–1686

    Google Scholar 

  • Mao Y, Doyle MP, Chen J (2001) Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic escherichia coli O157: H7. J Bacteriol 183:3811–3815

    Article  CAS  Google Scholar 

  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  CAS  Google Scholar 

  • Metspalu L, Hiiesaar K, Jõgar K, Švilponis E, Ploomi A, Kivimägi I, ALuik A, Mens’hikova N (2009) Oviposition preference of Pieris brassicae (L) on different Brassica oleracea var. capitata L. cultivars. Agron Res 7:406–411

    Google Scholar 

  • O’Flynn G, Ross RP, Fitzgerald GF, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol 703417–703424

  • Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13

    CAS  Google Scholar 

  • Sulakvelidze A, Alavidze Z, JGJr Morris (2001) Bacteriophage therapy. Antimicrob. Agents Chemother 45:649–659

    Article  CAS  Google Scholar 

  • Szafranek B, Synak E, Walig D, Szafranek J, Nawrot J (2008) Leaf surface compounds of the potato (Solanum tuberosum) and their influence on Colorado potato beetle (Leptinotarsa decemlineata) feeding. Chemoecology 18:205–216

    Article  CAS  Google Scholar 

  • Uhitil S, Jaksic S, Petrak T, Botka-Petrak K (2001) Presence of Escherichia coli O157:H7 in ground beef and ground baby beef meat. J Food Prot 64:862–864

    CAS  Google Scholar 

  • Viscardi M, Perugini AG, Auriemma C, Capuano F, Morabito S, Kim KP, Loessner MJ, Iovane G (2008) Isolation and characterisation of two novel coliphages with high potential to control antibiotic-resistant pathogenic Escherichia coli (EHEC and EPEC). Int J Antimicrob Agents 31:152–157

    Article  CAS  Google Scholar 

  • Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, Sun Z, Reed E, Ding L, Gong J, Li QQ, Hu J (2006) Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med 17:309–317

    Google Scholar 

  • Welinder-Olsson C, Kaijser B (2005) Enterohemorrhagic Escherichia coli (EHEC). Scand J Infect Dis 37:405–416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Arab Biotechnology Company www.arabbio.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. Jassim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jassim, S.A.A., Abdulamir, A.S. & Abu Bakar, F. Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms. World J Microbiol Biotechnol 28, 47–60 (2012). https://doi.org/10.1007/s11274-011-0791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0791-6

Keywords

Navigation