Skip to main content
Log in

Enhancing yeast cell viability after dehydration by modification of the lipid profile

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, we analysed metabolite features during the dehydration-rehydration process for different yeast species genetically closely related to S. cerevisiae, in order to determine whether metabolites might play a role in cell viability. We ranked the species S. cerevisiae, S. paradoxus, S. kudriavzevii, L. kluyveri, N. castellii, S. mikatae, S. bayanus, and S. servazzii according to their viability rate after the dehydration-rehydration process, and showed that desiccation tolerance across the species did not correlate with the intracellular content of trehalose or glycogen. Cell lipid composition was also investigated during this process, to see whether the content of triacylglycerols and phosphatidylcholine showed significant variations across the species. The increase of phosphatidylcholine level increase in both S. paradoxus and S. bayanus cells grown in supplemented media enhanced both their cell viability after stress imposition and lipid storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aries V, Kirsop BH (1978) Sterol biosynthesis by strains of Saccharomyces cerevisiae in the presence and absence of dissolved oxygen. J Inst Brew 84:118–121

    CAS  Google Scholar 

  • Beker MJ, Rapoport AI (1987) Conservation of yeasts by dehydration. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology, vol 35. pp 128–171

  • Beker MJ, Blumbergs JE, Ventina EJ, Rapoport AI (1984) Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 19:347–352

    Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122:188–195

    Article  CAS  Google Scholar 

  • Beney L, Martínez de Marañón I, Marechal P-A, Gervais P (2000) Influence of thermal and osmotic stresses on the viability of the yeast Saccharomyces cerevisiae. Int J Food Microbiol 55:275–279

    Article  CAS  Google Scholar 

  • Boumann HA, Gubbens J, Kpprengevel MC, Oh CS, Martin CE, Heck AJ, Patton-Vogt J, Henry SA, de Kruijff HB, de Kroon AI (2006) Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol Biol Cell 17:1006–1017

    Article  CAS  Google Scholar 

  • Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionisation tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344

    Article  Google Scholar 

  • Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage, and degradation of neutral lipids in yeast. Biochim Biophys Acta 1771:299–309

    CAS  Google Scholar 

  • Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  Google Scholar 

  • De Kroon AI (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 1771:343–352

    Google Scholar 

  • De Souza Espindola A, Silva Gomes D, Panek AD, Araujo EC (2003) The role of glutathione in yeast dehydration tolerance. Cryobiology 47:236–241

    Article  Google Scholar 

  • Del Carratore R, Della CC, Simili M, Taccini E, Scavuzzo M, Sbrana S (2002) Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat Res 513:83–191

    Google Scholar 

  • Deytieux C, Mussard L, Biron MJ, Salmon JM (2005) Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation. Appl Microbiol Biot 2:266–271

    Article  Google Scholar 

  • Eleutherio EC, Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156:263–266

    CAS  Google Scholar 

  • França MB, Panek AD, Araujo EC (2005) The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress Chaperon 10:167–170

    Article  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  Google Scholar 

  • Hayashida S, Ohta K (1980) Effects of phosphatidylcholine or ergosteryl oleate on physiological properties of Saccharomyces sake. Agric Biol Chem Tokyo 44:2561–2567

    CAS  Google Scholar 

  • Krallish I, Jeppsson H, Rapoport A, Hahn-Hägerdal B (1997) Effect of xylitol and trehalose on dry resistance of yeasts. Appl Microbiol Biotechnol 47:447–451

    Article  CAS  Google Scholar 

  • Lees ND, Lofton SL, Woods RA, Bard M (1980) The effect of varied energy source and detergent on the growth of sterol mutants of Saccharomyces cerevisiae. J Gen Microbiol 118:209–214

    CAS  Google Scholar 

  • McMaster CR, Bell RM (1994) Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. Regulatory insights from studies employing null and chimeric sn-1, 2-diacylglycerol choline- and ethanolaminephosphotransferases. J Biol Chem 269:28010–28016

    CAS  Google Scholar 

  • Montrocher R, Verner M-C, Briolay J, Gautier C (1998) Phylogenetic analysis of the Saccharomyces cerevisiae group based on polymorphisms of rDNA spacer sequences. Int J Syst Bacteriol 48:295–303

    Article  CAS  Google Scholar 

  • Muller LA, McCusker JH (2009) A multispecies-based taxonomic microarray revels interspecies hybidization and introgression in Saccharomyces cerevisiae. FEMS Yeast Res 9:143–152

    Article  CAS  Google Scholar 

  • Naumov GI (2000) Saccharomyces bayanus var. uvarum comb. nov. a new variety established by genetic analysis. Microbiology 69:410–414

    Article  CAS  Google Scholar 

  • Nguyen HV, Gaillardin C (2005) Evolutionary relationships between the former species S. uvarum and the hybrids S. bayanus and S. pastorianus; reinstatement of S. uvarum (Beijerinck) as a distinct species. FEMS Yeast Res 5:471–483

    Article  CAS  Google Scholar 

  • Novo MT, Beltran G, Torija MJ, Poblet M, Rozès N, Guillamon JM, Mas A (2003) Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol 86:153–161

    Article  CAS  Google Scholar 

  • Novo MT, Beltran G, Torija MJ, Poblet M, Rozès N, Guillamon JM, Mas A (2007) Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation. FEMS Yeast Res 7:304–316

    Article  CAS  Google Scholar 

  • Parrou JL, François J (1997) A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248:186–188

    Article  CAS  Google Scholar 

  • Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203

    Article  CAS  Google Scholar 

  • Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6:902–913

    Article  CAS  Google Scholar 

  • Redón M, Guillamón JM, Mas A, Rozès N (2008) Effect of active dry wine yeast storage upon viability and lipid composition. World J Microbiol Biotechnol 24:2555–2563

    Article  Google Scholar 

  • Redón M, Guillamón JM, Mas A, Rozès N (2009) Effect of lipid supplementation upon Saccharomyces cerevisiae lipid composition and fermentation performance at low temperature. Eur Food Res Technol 228:833–840

    Article  Google Scholar 

  • Redzepovic S, Orlic S, Sikora S, Majdak A, Pretorius IS (2002) Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett Appl Microbiol 35:305–310

    Article  CAS  Google Scholar 

  • Rodríguez-Porrata B, Novo M, Guillamón J, Rozès N, Mas A, Cordero Otero R (2008) Vitality enhancement of the rehydrated active dry wine yeast. Int J Food Microbiol 126:116–122

    Article  Google Scholar 

  • Rozès N, Garcia Jares C, Larue F, Lonvaud-Funel A (1992) Differentiation between fermenting and spoilage yeasts in wine by total free fatty acid analysis. J Sci Food Agric 59:351–359

    Article  Google Scholar 

  • Shinitzky M (1984) Membrane fluidity and cellular functions. In: Shinitzky M (ed) Physiology of membrane fluidity. Chemical Rubber Company Press, Boca Raton, pp 1–51

    Google Scholar 

  • Silljé HHW, Paalman JWG, Schure EG, Olsthoorn SQB, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181:396–400

    Google Scholar 

  • Simonin H, Beney L, Gervais P (2007) Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death. BBA Biomembr 1768:1600–1610

    Article  CAS  Google Scholar 

  • Tuller G, Nemec T, Hrastnik C, Daum G (1999) Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast 15:1555–1564

    Article  CAS  Google Scholar 

  • Vaudano E, Costantini A, Cersosimo M, Del Prete V, Garcia-Moruno E (2009) Application of real-time RT-PCR to study gene expression in active dry yeast (ADY) during the rehydration phase. Int J Food Microbiol 129:30–36

    Article  CAS  Google Scholar 

  • Walker GM, van Dijck P (2006) Physiological and molecular responses of yeasts to the environment. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. The yeast handbook. Springer, Berlin, pp 111–152

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by grant AGL2006-14194-C02-01 from the Spanish Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cordero-Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Porrata, B., Lopez-Martinez, G., Redón, M. et al. Enhancing yeast cell viability after dehydration by modification of the lipid profile. World J Microbiol Biotechnol 27, 75–83 (2011). https://doi.org/10.1007/s11274-010-0428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0428-1

Keywords

Navigation