Skip to main content
Log in

Production of mosquitocidal Bacillus sphaericus by solid state fermentation using agricultural wastes

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, Bacillus sphaericus NRC 69 was grown in culture media, in which 12 agricultural wastes were tested as the main carbon, nitrogen and energy sources under solid state fermentation. Of the 12 tested agricultural by-products, wheat bran was the most efficient substrate for the production of B. sphaericus mosquitocidal toxins against larvae of Culex pipiens (LC50 1.2 ppm). Mixtures of tested agricultural wastes separately with wheat bran enhanced the produced toxicity several folds and decreased LC50 between 3.7- and 50-fold in comparison with that of agricultural wastes without mixing. The toxicity of B. sphaericus grown in wheat bran/rice hull at 8/2 (g/g) and wheat bran/barley straw at 1/4 (g/g) showed the same toxicity as that in wheat bran medium (LC50 decreased 17- and 16-fold, in comparison with that in rice hull or barely straw media, respectively). In wheat bran medium, the maximum toxicity of the tested organism obtained at 50% moisture content, inoculum size 84 × 106 CFU/g wheat bran and incubation for 6 days at 30°C. Addition of cheese whey permeate at 10% to wheat bran medium enhanced the toxicity of B. sphaericus NRC 69 about 46%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing effectiveness of insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Ampofo JA (1995) Use of local raw materials for the production of Bacillus sphaericus insecticides in Ghana. Biocont Sci Technol 5:417–423. doi:10.1080/09583159550039611

    Article  Google Scholar 

  • de Barjac H (1990) Classification of Bacillus sphaericus strains and comparative toxicity to mosquito larvae. In: de Barjac H, Southerland D (eds) Bacterial control of mosquitoes and black flies. Rutgers University Press, New Jeresy, pp 228–236

    Google Scholar 

  • Devi PSV, Ravinder T, Jaidev C (2005) Cost-effective production of Bacillus thuringiensis by solid-state fermentation. J Invertebr Pathol 88:163–168. doi:10.1016/j.jip.2005.01.013

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F-test. Biometrics 11:1

    Article  Google Scholar 

  • Economic and statistics institute (2000) Part 1, Published by Agriculture Research Center, Egypt. Minstry of Agriculture

  • El-Bendary MA (1999) Growth physiology and production of mosquitocidal toxins from Bacillus sphaericus. Ph.D. thesis, Faculty of Science, Ain-Shams University, Cairo, Egypt

  • El-Bendary MA, Priest FG, Charles J-F, Mitchell WJ (2005) Crystal protein synthesis is dependent on early sporulation gene expression in Bacillus sphaericus. FEMS Microbiol Lett 252:51–56. doi:10:1016/j.femse.2005.08.027

    Article  CAS  Google Scholar 

  • El-Bendary MA, Moharram ME, Foda MS (2008) Efficient mosquitocidal toxin production by Bacillus sphaericus using cheese whey permeate under both submerged and solid state fermentation. J Invertebr Pathol 98:46–53. doi:10.1016/j.jip.2007.12.004

    Article  CAS  Google Scholar 

  • Foda MS, El-Bendary MA, Moharam ME (2003) Salient parameters involved in mosquitocidal toxins production from Bacillus sphaericus by semi-solid substrate fermentation. Egypt J Microbiol 38:229–246

    Google Scholar 

  • Gangurde RP, Shethna YI (1995) Growth, sporulation and toxin production by Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in media based on mustard-seed meal. World J Microbiol Biotechnol 11:202–205. doi:10.1007/BF00704649

    Article  CAS  Google Scholar 

  • Holker U, Lenz J (2005) Solid-state fermentation-are there any biotechnological advantages? Curr Opin Microbiol 8:301–306. doi:10.1016/j.mib.2005.04.006

    Article  CAS  Google Scholar 

  • Hongzhang C, Fujian X, Zhonghou T, Zuohu L (2002) A novel industrial- level reactor with tow dynamic changes of air for solid state fermentation. J Biosci Bioeng 93:211–214. doi:10.1016/51389-1723(02)80016-0

    Article  Google Scholar 

  • Jagadeesh KS, Geeta GS (1994) Effect of Trichoderma harzianum grown on different food bases on the biological control of Sclerotium rolfsii Sacc. in groundnut. Environ Ecol 12:471–473

    Google Scholar 

  • Karim MI, Lucas RJ, Osborne KJ, Rogers PL (1993) The effect of oxygen on the sporulation and toxicity of Bacillus sphaericus 2362. Biotech Lett 15:47–50. doi:10.1007/BF00131551

    Article  CAS  Google Scholar 

  • Kashyap P, Sabu A, Pandey A, Szakacs G (2002) Extra-cellular l-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem 38:307–312. doi:10.1016/s0032-9592(02)00060-2

    Article  CAS  Google Scholar 

  • Klein D, Yanal P, Hofstein R, Fridlender B, Brauns S (1989) Production of Bacillus sphaericus larvicide on industrial peptones. Appl Microbiol Biotechnol 30:580–584. doi:10.1007/BF00255363

    Article  CAS  Google Scholar 

  • Kuppusamy M, Balaraman K (1991) Effect of corn steep liquor on growth, mosquito larvicidal activity of Bacillus thuringiensis var. israelensis de Barjac 1978 and Bacillus sphaericus Neide 1904. Indian Exp Biol 29:187–189

    CAS  Google Scholar 

  • Lacey LA (1984) Production and formulation of Bacillus sphaericus. Mosq News 44:153–159

    Google Scholar 

  • Mahanta N, Gupta A, Khare SK (2007) Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatrophacurcas seed cake as substrate. Bioresour Technol 99:1729–1735. doi:10.1016/j.biortech.2007.03.046

    Article  CAS  Google Scholar 

  • Martins CD, De Aguiar PF, Servulo FF (2006) Production of Bacillus sphaericus entomopathogenic biomass using brewery residues. Appl Biochem Biotechnol 131:659–667. doi:10.1385/ABAB:131:1:659

    Article  Google Scholar 

  • Obeta JAN, Okafor N (1983) Production of Bacillus sphaericus 1593 primary powder on media made from locally obtainable Nigerian agriculture products. Can J Microbiol 29:704–709

    Article  CAS  Google Scholar 

  • Pandey A (1994) Solid state fermentation- an overview. In: Pandey A (ed) Solid state fermentation. Wiley Eastern Limited, New Delhi, pp 3–10

    Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. doi:10:1016/S1369-703x(02)00121-3

    Article  CAS  Google Scholar 

  • Poopathi S, Abidha S (2007) Use of feather-based culture media for production of mosquitocidal bacteria. Biol Control 43:49–55. doi:10.1016/j.biocontrol.2007.04.019

    Article  Google Scholar 

  • Poopathi S, Anupkumar K, Kabilan L, Sekar V (2002) Development of low-cost media for the culture of mosquito larvicides, Bacillus sphaericus and Bacillus thuringiensis serovar israelensis. World J Microbiol Biotechnol 18:207–216. doi:10.1023/A:1014937311839

    Article  Google Scholar 

  • Prabakaran G, Balaraman K (2006) Development of a cost-effective medium for the large scale production of Bacillus thuringiensis var israelensis. Biol Control 36:288–292. doi:10.1016/j.biocontrol.2005.09.018

    Article  CAS  Google Scholar 

  • Prabakaran G, Balaraman K, Hoti SL, Monomani AM (2007) A cost–effective medium for the large scale production of Bacillus sphaericus H5a5b (VCRC B42) for mosquito control. Biol Control 41:379–383. doi:10.1016/j.biocontrol.2007.02.004

    Article  Google Scholar 

  • Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electronic J Bacteriol 15

  • Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289. doi:10.1007/s002530000565

    Article  CAS  Google Scholar 

  • Russel BL, Jelley SA, Yousten AA (1989) Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362. Appl Environ Microbiol 55:294–297

    Google Scholar 

  • Sangeetha P, Jegarajan R, Panicker S (1993) Mass multiplication of biocontrol agent Trichoderma spp. Indian J Mycol Plant Pathol 23:328–330

    Google Scholar 

  • Shevtsov VV, Potrova TM, Khovrychev MP, Letunova EV, Vadim VS (1990) Growth and spore germination factors in different strains of Bacillus sphaericus. Microbiol 59:304–309

    Google Scholar 

  • Singer A (1981) Potential of Bacillus sphaericus and related spore forming bacteria for pest control. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. London, Academic Press, pp 283–298

    Google Scholar 

  • SPSS (1998) SPSS users guide statistics version 8. Copyright SPSS Inc., USA

    Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (1995) principles of fermentation technology, 2nd edn. Elsevier Science Ltd., New York

    Google Scholar 

  • Suyanandona P, Potacharoen W, Arunpairojana V, Boonsong P, Voltanakul J (1996) Solid state cultivation of Bacillus thuringiensis for insect larvicide in agriculture and public health. Khon Kaen Agril J 24:190–196

    Google Scholar 

  • Yousten AA, Wallis DA (1987) Batch and continuous culture production of the mosquito larval toxin of Bacillus sphaericus 2362. J Indust Microbiol 2:227–283

    Article  Google Scholar 

  • Yousten AA, Madhekar N, Wallis DA (1984) Fermentation conditions affecting growth, sporulation and mosquito larval toxin formation by Bacillus sphaericus. Dev Indust Microbiol 25:757–762

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda A. El-Bendary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bendary, M.A. Production of mosquitocidal Bacillus sphaericus by solid state fermentation using agricultural wastes. World J Microbiol Biotechnol 26, 153–159 (2010). https://doi.org/10.1007/s11274-009-0154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0154-8

Keywords

Navigation