Skip to main content
Log in

Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to correlate cyclopropane fatty acid of the membrane of Lactobacillus bulgaricus L2 with freeze-drying survival at different growth conditions, fatty acid methyl esters (FAME) from extracts grown at difference fermentation pH (5.0, 5.5, 6.0, 6.5) and temperature (30, 35, 37, 39°C) were obtained and analyzed. Results showed that cultures grown at 30°C and pH 5.0, 35°C and pH 5.0, 39°C and pH 6.0 exhibited more resistance to the freeze-drying process than cultures grown in other conditions, cells cultured at 30°C and pH 5.0 had a highest survival rate. On the other hand, cells grown at 37°C displayed poor resistance to adverse conditions possible because of the lower cycC19:0 content. It was concluded that the improved cryotolerance observed during freeze-drying would be associated with an increase in cycC19:0 content and cycC19:0/SFA ratio and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Annous BA, Kozempel MF, Kurantz MJ (1999) Changes in membrane fatty acid composition of pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl Environ Microbiol 65:2857–2862

    CAS  Google Scholar 

  • Béal C, Fonseca F, Corrieu G (2001) Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Res 84:2347–2356

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173. doi:10.1016/S0168-1605(97)00068-8

    Article  CAS  Google Scholar 

  • Carvalho AS, Silva J, Teixeira P, Malcata FX, Gibbs P (2003) Impedimetric method for estimating the residual activity of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Int Dairy J 13:463–468. doi:10.1016/S0958-6946(03)00049-9

    Article  Google Scholar 

  • Casadei MA, Manas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC8164. Appl Environ Microbio 68:5965–5972. doi:10.1128/AEM.68.12.5965-5972.2002

    Article  CAS  Google Scholar 

  • Dionisi F, Golay PA, Elli M, Fay LB (1999) Stability of cyclopropane and conjugated linoleic acids during fatty acid quantification in lactic acid bacteria. Lipids 34:1107–1115. doi:10.1007/s11745-999-0462-8

    Article  CAS  Google Scholar 

  • Drici-Cachon Z, Cavin JF, Diviès C (1996) Effect of pH and age of culture on cellular fatty acid composition of Leuconostoc oenos. Lett Appl Microbiol 22:331–334. doi:10.1111/j.1472-765X.1996.tb01172.x

    Article  CAS  Google Scholar 

  • Duforc EJ, Smith IC, Jarrell HC (1984) Role of cyclopropane moieties in the lipid properties of biological membrane: a 2H NMR structural and dynamical approach. Biochem J 23:2300–2309. doi:10.1021/bi00305a033

    Article  Google Scholar 

  • Fernádez Murga ML, Bernik D, Valdez GF, Disalvo A (1999) Permeability and stability properties of membranes formed by lipids of Lactobacillus acidophilus grown at different temperatures. Arch Biochem Biophys 363:115–121. doi:10.1006/abbi.1998.1093

    Article  Google Scholar 

  • Fernádez Murga ML, Cabrera GM, Valdez GF, Disalvo A, Seldes AM (2000) Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus. J Appl Microbiol 88:342–348. doi:10.1046/j.1365-2672.2000.00967.x

    Article  Google Scholar 

  • Fonseca F, Beal C, Corrieu G (2000) Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. J Dairy Res 67:83–90. doi:10.1017/S002202999900401X

    Article  CAS  Google Scholar 

  • Fozo EM, Quivey RG Jr (2004) The fabM gene product of streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152–4158. doi:10.1128/JB.186.13.4152-4158.2004

    Article  CAS  Google Scholar 

  • Gómez Zavaglia A, Disalvo EA, De Antoni GL (2000) Fatty acid composition and freeze-thaw resistance in lactobacilli. J Dairy Res 67:241–247. doi:10.1017/S0022029900004179

    Article  Google Scholar 

  • Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441

    CAS  Google Scholar 

  • Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    CAS  Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51. doi:10.1016/S0168-1605(00)00193-8

    Article  CAS  Google Scholar 

  • Johnsson T, Nikkilä P, Toivonen L, Rosenqvist H, Laakso S (1995) Cellular fatty acid profiles of lactobacillus and lactococcus strains in relation to oleic acid content of the cultivation medium. Appl Environ Microbiol 61:4497–4499

    CAS  Google Scholar 

  • Machado MC, Lopez CS, Heras H, Rivas EA (2004) Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422:61–70. doi:10.1016/j.abb.2003.11.001

    Article  CAS  Google Scholar 

  • Mille Y, Beney L, Gervais P (2005) Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnol Bioeng 92:479–484. doi:10.1002/bit.20631

    Article  CAS  Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methylesters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    CAS  Google Scholar 

  • Palmfeldt J, Hahn-Hagerdal B (2000) Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying. Int J Food Microbiol 55:235–238. doi:10.1016/S0168-1605(00)00176-8

    Article  CAS  Google Scholar 

  • Rozes N, Peres C (1998) Effect of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl Environ Microbiol 49:108–111

    CAS  Google Scholar 

  • Schoug A, Fischer J, Heipieper HJ, Schnurer J, Hakansson S (2008) Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3. J Ind Microbiol Biotechnol 35:175–181. doi:10.1007/s10295-007-0281-x

    Article  CAS  Google Scholar 

  • Smith DD Jr, Norton SJ (1980) S-Adenosylmethionine, cyclopropane fatty acid synthase, and the production of lactobacillic acid in Lactobacillus plantarum. Arch Biochem Biophys 205:564–570. doi:10.1016/0003-9861(80)90139-3

    Article  CAS  Google Scholar 

  • Smittle RB, Gilliland SE, Speck ML, Walter WMJ (1974) Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. Appl Microbiol 27:738–743

    CAS  Google Scholar 

  • Teixeira PM, Castro HP, Kirby R (1996) Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol 22:34–38. doi:10.1111/j.1472-765X.1996.tb01103.x

    Article  CAS  Google Scholar 

  • Teixeira H, Goncalves MG, Rozes N, Ramos A, San Romao MV (2002) Lactobacillic acid accumulation in the plasma membrane of Oenoccus oeni: Aresponse to ethanol stress? Microb Ecol 43:146–153. doi:10.1007/s00248-001-0036-6

    Article  CAS  Google Scholar 

  • Trevors JT (2003) Fluorescent probes for bacterial cytoplasmic membrane research. J Biochem Biophys Methods 57:87–103. doi:10.1016/S0165-022X(03)00076-9

    Article  CAS  Google Scholar 

  • Veerkamp JH (1971) Fatty acid composition of bifidobacterium and lactobacillus strains. J Bacteriol 108:861–867

    CAS  Google Scholar 

  • Wang Y, Corrieu G, Béal C (2005a) Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci 88:21–29

    Article  CAS  Google Scholar 

  • Wang Y, Delettre J, Guillot A, Corrieu G, Béal C (2005b) Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology 50:294–307. doi:10.1016/j.cryobiol.2005.03.001

    Article  CAS  Google Scholar 

  • Zhao G, Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol 99:333–338. doi:10.1111/j.1365-2672.2005.02587.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Dairy Science, Ministry of Education (Northeast Agricultural University). We are grateful to Mr. Axel Rau for the helpful manuscript revision. We also thank Dr. Li-Bo Liu for statistical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhao, JL., Wang, YT. et al. Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions. World J Microbiol Biotechnol 25, 1659–1665 (2009). https://doi.org/10.1007/s11274-009-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0060-0

Keywords

Navigation