Skip to main content
Log in

Stimulation of bacterial DNA transformation by cattle saliva: implications for using genetically modified plants in animal feed

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the likelihood of DNA transfer from genetically modified plants (GMP) to bacteria, a rescue plasmid system for Streptococcus gordonii was modified. It was applied to monitor the DNA transformation into oral and intestinal bacteria in cattle. Transformation and recombination frequency of S. gordonii was dependent on the length of the transformed DNA. Beside horse serum, cow saliva also rendered the cells competent for DNA uptake. Competence induction was completely abolished by the addition of liquid from maize silage. Competence was partially suppressed by the addition of rumen liquid. In order to study native bacteria, 724 colonies sensitive to the antibiotics were isolated from either silage or the saliva and rumen of cows. Using horse serum, silage liquid, cow saliva or rumen liquid for competence induction, the isolates failed to integrate linearized pMK110 DNA and restore antibiotic resistance. Only 6 of the colonies obtained from the teeth of a silage-fed cow were sensitive to the antibiotics. Two isolates were related to Staphylococcus warneri. They could be transformed with the model plasmid pMK110 after induction by horse serum. DNA transformation, however, was not stimulated by incubation with cattle saliva, silage or rumen liquid. The response to competence-stimulating factors seems to vary between different bacterial species. These results suggest that the probability of DNA uptake from silage of GMPs is very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andow DA, Hilbeck A (2004) Science-based risk assessment for nontarget effects of transgenic crops. Bioscience 54:637–649

    Article  Google Scholar 

  • Badosa E, Moreno C, Montesinos E (2004) Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions. FEMS Microbiol Ecol 48:169–178

    Article  CAS  Google Scholar 

  • Blackwood CB, Buyer JS (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual 33:832–836

    Article  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Google Scholar 

  • Cvitkovitch DG (2001) Genetic competence and transformation in oral streptococci. Crit Rev Oral Biol Med 12:217–243

    Article  CAS  Google Scholar 

  • De Vries J, Wackernagel W (1998) Detection of nptII (Kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257:606–613

    Article  Google Scholar 

  • De Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215

    Article  Google Scholar 

  • De Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci USA 99:2094–2099

    Article  CAS  Google Scholar 

  • De Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 53:323–334

    Article  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815

    CAS  Google Scholar 

  • Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwägele F, Jahreis G, Flachowsky G (2001) The fate of forage DNA in farm animals: a collaborative case-study investigating cattle and chicken fed recombinant plant material. Eur Food Res Technol 212:129–134

    Article  CAS  Google Scholar 

  • Einspanier R, Lutz B, Rief S, Berezina O, Zverlov V, Schwarz WH, Mayer J (2004) Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. Eur Food Res Technol 218:269–273

    Article  CAS  Google Scholar 

  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554

    CAS  Google Scholar 

  • Havarstein LS (1998) Bacterial gene transfer by natural genetic transformation. APMIS Suppl 84:43–46

    CAS  Google Scholar 

  • Hertel C, Probst AJ, Cavadini C, Meding E, Hammes WP (1998) Safety assessment of genetically modified microorganisms applied in meat fermentations. Syst Appl Microbiol 18:469–476

    Google Scholar 

  • Kamath U, Singer C, Isenberg HD (1992) Clinical significance of Staphylococcus warneri bacteremia. J Clin Microbiol 30:261–264

    CAS  Google Scholar 

  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 25:3345–3351

    Article  CAS  Google Scholar 

  • Kharazmi M, Hammes WP, Hertel C (2002) Construction of a marker rescue system in Bacillus subtilis for detection of horizontal gene transfer in food. Syst Appl Microbiol 25:471–477

    Article  CAS  Google Scholar 

  • Kharazmi M, Sczesny S, Blaut M, Hammes WP, Hertel C (2003a) Marker rescue studies of the transfer of recombinant DNA to Streptococcus gordonii in vitro, in foods and gnotobiotic rats. Appl Environ Microbiol 69:6121–6127

    Article  CAS  Google Scholar 

  • Kharazmi M, Bauer T, Hammes WP, Hertel C (2003b) Effect of food processing on the fate of DNA with regard to degradation and transformation capability in Bacillus subtilis. Syst Appl Microbiol 26:495–501

    Article  CAS  Google Scholar 

  • Kilian M, Mikkelsen L, Henrichsen J (1989) Replacement of the type strain of Streptococcus mitis. Request for an opinion. Int J Syst Bacteriol 39:498–499

    Article  Google Scholar 

  • Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing response of soil microorganisms to GM plants. Trends Ecol Evol 18:403–410

    Article  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar K, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  Google Scholar 

  • Lutz B, Wiedemann S, Albrecht C (2006) Degradation of transgenic Cry1Ab DNA and protein in Bt-176 maize during the ensiling process. J Anim Physiol Anim Nutr 90:116–123

    Article  CAS  Google Scholar 

  • Malanowska K, Salyers AA, Gardner JF (2006) Characterization of a conjugative transposon integrase, IntDOT. Mol Microbiol 60:1228–1240

    Article  CAS  Google Scholar 

  • Melville CM, Scott KP, Mercer DK, Flint HJ (2001) Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens. Antimicrob Agents Chemother 45:3246–3249

    Article  CAS  Google Scholar 

  • Mercer DK, Scott KP, Bruce-Johnson WA, Glover LA, Flint HJ (1999) Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl Environ Microbiol 65:6–10

    CAS  Google Scholar 

  • Mercer DK, Scott KP, Melville CM, Glover LA, Flint HJ (2001) Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. FEMS Microbiol Lett 200:163–167

    Article  CAS  Google Scholar 

  • Netherwood T, Martin-Orue SM, O’Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 22:204–209

    Article  CAS  Google Scholar 

  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat Biotechnol 22:1110–1114

    Article  CAS  Google Scholar 

  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. strain BD413 (pFG4DeltanptII) with transgenic plant DNA in soil microorganisms and effects of kanamycin on selection of transformants. Appl Environ Microbiol 66:1237–1242

    Article  CAS  Google Scholar 

  • Philipps RH, Deaville ER, Maddison BC (2003) Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. J Dairy Sci 86:4070–4078

    Article  Google Scholar 

  • Prudhomme M, Libante V, Claverys JP (2002) Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc Natl Acad Sci USA 19:2100–2105

    Article  CAS  Google Scholar 

  • Redfield RJ, Findlay WA, Bosse J, Kroll JS, Cameron ADS, Nash JHE (2006) Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol 6 doi:10.1186/1471-2148-6-82

  • Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774

    Article  CAS  Google Scholar 

  • Wiedemann S, Lutz B, Kurtz H, Schwarz FJ, Albrecht C (2006) In situ studies on the time-dependent degradation of recombinant corn DNA and protein in the bovine rumen. J Anim Sci 84:135–144

    CAS  Google Scholar 

  • Wiedemann S, Gürtler P, Albrecht C (2007) Effect of feeding genetically modified maize on the bacterial community in bovine rumen. Appl Environ Microbiol 73:8012–8017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge and extend our thanks to C. Hertel (University Hohenheim, Germany) for providing the S. gordonii strain and the marker rescue plasmids. We are also deeply grateful for the contributions of S. Wiedemann for providing saliva and teeth of cows and silage liquid, F. Schwarz for providing the rumen liquid from fistulated cows, H.H.D. Meyer for his support and interest in the project, and A. Schwarz for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shedova, E., Albrecht, C., Zverlov, V.V. et al. Stimulation of bacterial DNA transformation by cattle saliva: implications for using genetically modified plants in animal feed. World J Microbiol Biotechnol 25, 457–463 (2009). https://doi.org/10.1007/s11274-008-9910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9910-4

Keywords

Navigation