Skip to main content
Log in

Denitrification activity of Bradyrhizobium sp. isolated from Argentine soybean cultivated soils

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two hundred and fifty strains, all of them representatives of native Bradyrhizobium sp., isolated from soils cultivated with soybean have been characterized by their denitrification activity. In addition, the denitrification potential of those soils was also measured by evaluating the most-probable-number (MPN) of denitrifying bacteria and the denitrification enzyme assay (DEA). Of the 250 isolates tested, 73 were scored as probable denitrifiers by a preliminary screening method. Only 41 were considered denitrifiers because they produced gas bubbles in Durham tubes, cultures reached an absorbance of more than 0.1 and NO3− and NO2− were not present. Ten of these 41 were selected to confirm denitrification and to study denitrification genes. According to N2O production and cell protein concentration with NO3−, the isolates could be differentiated in three categories of denitrifiers. The presence of the napA, nirK, norC and nosZ genes was detected by production of a diagnostic PCR product using specific primers. RFLP from the 16S-23S rDNA spacer region (IGS) revealed that denitrifiers strains could be characterized as Bradyrhizobium japonicum and strains which were non-respiratory denitrifiers as B. elkanii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asakawa S (1993) Denitrifying ability of indigenous strains of Bradyrhizobium japonicum isolated from fields under paddy-upland rotation. Biol Fertil Soils 15:196–200. doi:10.1007/BF00361611

    Article  CAS  Google Scholar 

  • Barton L, Mclay CDA, Schipper LA, Smith CT (1999) Annual denitrification rates in agricultural and forest soils: a review. Aust J Soil Res 37:1073–1093. doi:10.1071/SR99009

    Article  Google Scholar 

  • Bedmar EJ, Robles EF, Delgado MJ (2005) The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum 10th Nitrogen Cycle Meeting 2004. Biochem Soc Trans 33((Part 1)):141–145. doi:10.1042/BST0330141

    CAS  Google Scholar 

  • Bergensen FJ (1977) A treatise on dinitrogen fixation. In: Hardy RW, Silver W (eds) Biology. Wiley, New York, pp 519–556

  • Breitenbeck GA, Bremner JM (1989) Ability of free-living cells of Bradyrhizobium japonicum to denitrify in soils. Biol Fertil Soils 7:219–224. doi:10.1007/BF00709652

    Article  Google Scholar 

  • Bremner JM (1996). Nitrogen-total. In: Klute A (ed) Methods of soil analysis. Part 3: chemical methods (Sparks DL ed). SSSA-ASA, Madison, WI, USA, pp 1085–1123

  • Catroux G, Revellin C, Hartmann A (1996) Practical aspects of legume inoculation: inoculant quality and inoculation efficacy. Consequences for the soil microflora. En: Actas del Seminario “Microorganismos útiles para la agricultura y la forestación”, Mayo 20–22, Santa Rosa, La Pampa, INTA – INRA, pp 108–125

  • Chéneby D, Hartmann A, Hénault C, Topp E, Germon JC (1998) Diversity of denitrifying microflora and ability to N2O in two soils. Biol Fertil Soils 28:19–26. doi:10.1007/s003740050458

    Article  Google Scholar 

  • Chéneby D, Philippot L, Hartmann A, Hénault C, Germon JC (2000) 16S DNA analysis for characterization of denitrifying bacteria isolated from three agriculture soils. FEMS Microbiol Ecol 34:121–128

    Google Scholar 

  • Ciampitti IA, Ciarlo EA, Conti MA (2006) Emisiones de óxido nitroso en un cultivo de soja: efecto de la inoculación y de la fertilización nitrogenada. Ci Suelo 23(2):123–131

    Google Scholar 

  • Cochran WG (1950) Estimation of bacterial densities by means of the “most probable number”. Biometrics 6:105–116. doi:10.2307/3001491

    Article  CAS  Google Scholar 

  • Davidson EA, Strand MK, Galloway LF (1985) Evaluation of the most probable number method for enumerating denitrifying bacteria. Soil Sci Soc Am J 49:642–645

    Google Scholar 

  • Delgado MJ, Casella S, Bedmar EJ (2007) Denitrification in rhizobia–legume simbiosis. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 83–91. ISBN 13:978-0-444-53108-7. ISBN 10:0-444-53108-4

  • Fadin JF (1980) Prueba de reducción del nitrato. En: Fadin JF (ed) Pruebas bioquímicas para la identificación de bacterias de importancia clínica. Panamericana, Buenos Aires, pp 142–147

  • FAO (2007) Annuaire FAO. FAO, Roma: Available from http://www.fao.org/ststistics/census/default.asp. Cited 20 Dec 2007

  • Gamble TN, Betlach MR, Tiedje JM (1977) Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33:926–939

    CAS  Google Scholar 

  • Gee GW, Bauder JW (1986). Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1, 2nd edn. Agron. Monogr. 9, WI. ASA and SSSA, Madison, pp. 383–411

  • Giambiagi N, Rimolo M, Bianchi V (1990) Desnitrificación en suelos molisoles de la pradera pampeana. Ci Suelo 8:161–166

    CAS  Google Scholar 

  • Gómez MA, Silva N, Hartmann A, Sagardoy MA, Catroux G (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173. doi:10.1023/A:1018533629378

    Article  Google Scholar 

  • Hartmann A, Mazurier S, Rodriguez-Navarro D, Temprano Vera F, Cleyet-Marel JC, Prin Y, Galiana A, Fernàndez-López M, Toro N, Moënne-Loccoz Y (2006) Nodulating symbiotic bacteria and soil quality. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality, Chap 9.2. CABI Publishing, Oxford, pp 231–247

  • Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosyst 72:267–278. doi:10.1007/s10705-005-3109-y

    Article  Google Scholar 

  • Kishinevsky BD, Nandasena KG, Yates RJ, Nemas C, Howieson JG (2003) Phenotypic and genetic diversity among rhizobia isolated from three Hedysarum species: H. spinosissimum, H. coronarium and H. flexuosum. Plant Soil 251:143–153. doi:10.1023/A:1022967213088

    Article  CAS  Google Scholar 

  • Mahne I, Tiedje JM (1995) Criteria and methodology for identifying respiratory denitrifiers. Appl Environ Microbiol 61:1110–1115

    CAS  Google Scholar 

  • Martin K, Parsons LL, Murria RE, Smith MS (1988) Dynamics of soil denitrifier populations: relationships between enzyme activity, most probable number counts, and actual N gas loss. Appl Environ Microbiol 54:2711–2716

    CAS  Google Scholar 

  • O’Hara GW, Daniel RM (1985) Rhizobial denitrification: a review. Soil Biol Biochem 17:1–9. doi:10.1016/0038-0717(85)90082-3

    Article  CAS  Google Scholar 

  • Picone LI, Videla CC, Garcia FO (1997) Desnitrificación durante el cultivo de trigo en un argiudol tipico bajo siembra directa y labranza convencional. Ci Suelo 15:53–58

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  • Sameshima-Saito R, Chiba K, Minamisawa K (2004) New method of denitrification analysis of Bradyrhizobium field isolates by gas chromatographic determination of 15N-labeled N2. Appl Environ Microbiol 70:2886–2891. doi:10.1128/AEM.70.5.2886-2891.2004

    Article  CAS  Google Scholar 

  • Silva Lima A, Andrade Resende Pereira JP, de Souza Moreira FM (2005) Diversidad fenotípica e eficiencia simbiótica de estirpes de Bradyrhizobium spp. de solos da Amazonia. Pesq agropec Bras Brasilia 40:1095–1104

    Google Scholar 

  • Smith MS, Parsons LL (1985) Persistence of denitrifying enzyme activity in dried soils. Appl Environ Microbiol 49:316–320

    CAS  Google Scholar 

  • Smith GB, Smith MS (1986) Symbiotic and free-living denitrification by Bradyrhizobium japonicum. Soil Sci Soc Am J 50:349–354

    CAS  Google Scholar 

  • Staley TE, Griffin JB (1981) Simultaneous enumeration of denitrifying and nitrate reducing bacteria in soil by a microtiter most probable number procedure. Soil Biol Biochem 13:385–388. doi:10.1016/0038-0717(81)90082-1

    Article  Google Scholar 

  • Steel R, Torrie J (1997) Análisis de la Varianza I. En: Bioestadística: principios y procedimientos. McGraw Hill, México, pp 132–134

  • Tiedje JM (1994) Denitrifiers. In: Klute A (ed) Methods of soil analysis. Part 2: microbiological and biochemical properties. SSSA, Madison, pp 245–265

    Google Scholar 

  • Velasco L, Mesa S, Xu C, Delgado MJ, Bedmar E (2004) Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum. Antonie Van Leeuwenhoek 85:229–235. doi:10.1023/B:ANTO.0000020156.42470.db

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the pratical study of the root-nodule bacteria. IBP Handbook no. 15. Blackwell, Oxford

Download references

Acknowledgements

The authors are grateful to Universidad Nacional del Sur for financial support of the research work, through PGI No. 24/A112 and to CONICET for providing a fellowship to Leticia A. Fernández. We would like to thank Eulogio Bedmar from Zaidín for provided the primers to the detection of denitrifying genes and for helpful discussion and advice. We would also like to thank Alejandro Pidello from Universidad Nacional de Rosario for providing laboratory facilities to perform the chemical analysis; Viviana Echenique and Marina Díaz from CERZOS CONICET for providing the necessary facilities to do the molecular analysis and Carolina Fernández for editing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Andrea Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, L.A., Perotti, E.B., Sagardoy, M.A. et al. Denitrification activity of Bradyrhizobium sp. isolated from Argentine soybean cultivated soils. World J Microbiol Biotechnol 24, 2577–2585 (2008). https://doi.org/10.1007/s11274-008-9828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9828-x

Keywords

Navigation