Skip to main content
Log in

Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from chilean forestry

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trametes versicolor and Agaricus augustus, with a maximum tolerable concentration (MTC) of 80 μg ml−1 tribromophenol (TBP), were selected to evaluate TBP biodegradation capacity. These fungi were capable of decreased TBP concentrations and A. augustus was also capable of biotransforming TBP to tribromoanisole (TBA). Peroxidase and laccase activities were observed in the T. versicolor supernatant but not in that of A. augustus. These tolerance levels could be due to either lignolytic enzymes that degrade TBP or the ability of the fungi to biotransform TBP to tribromoanisole, respectively. The sustained ability of T. versicolor to degrade TBP (total of 40 μg ml−1) in the presence of an additional carbon source suggests that it may have potential applications in the degradation of forestry industry waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylthiazoline-6-sulfonate)

GC:

Gas chromatography

GC-MS:

Gas-mass chromatography

YMG:

Yeast Maltose Glucose

MTC:

Maximum tolerable concentration

TBP:

2,4,6-tribromophenol

TBA:

Tribromoanisole

References

  • Álvarez-Rodriguez ML, López-Ocaña LO, López-Coronado JM, Rodríguez E, Martínez MJ, Larriba G, Coque JJ (2002) Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O methylation of 2,4,6-trichlorophenol. Appl Environ Microbiol 68:5860–5869

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isoenzymes from Trametes versicolor and role of the mediator 2,20-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT [1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2007

    CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    CAS  Google Scholar 

  • Coque JJ, Álvarez-Rodríguez ML, Larriba G (2003) Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Appl Environ Microbiol 56:5089–5095

    Article  CAS  Google Scholar 

  • Cserjesi AJ, Jonson EL (1972) Methylation of pentachlorophenol by Trichoderma virgatum. Can J Microbiol 18:45–49

    Article  CAS  Google Scholar 

  • Durán N, Santiago MF, Rodríguez J (1999) Lignin degradation by low molecular mass iron chelating compounds: application in the pulp and paper industry. In: Proccedings of the 10th International Symposium on Wood and Pulping Chemistry, Yokohama, Japan, pp 286–289

  • Durán N, Esposito E (2000) Potencial applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  Google Scholar 

  • EPA (1998) Organobromine production wastes, identification and listing of hazarduos waste, land disposal restrictions, listing of CERCLA hazardous substances, reportable quantities

  • Garrido N (1988) Agaricales s.l. und ihre Mykorrhizen in den Nothofagus-Wäldern Mittelchiles. Editotial J. Cramer, Germany, Berlín

    Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Gutiérrez M, Becerra J, Barra R (2002) Tribromofenol empleado en aserraderos: métodos de análisis, características físico-químicas y presencia en componentes ambientales. Bol Soc Chil Quím 47:485–493

    Article  Google Scholar 

  • Gutiérrez M, Becerra J, Godoy J, Barra R (2005) Occupational and environmental exposure to tribromophenol used for wood surface protection in sawmills. Int J Environ Health Res 15(3):171–179

    Article  CAS  Google Scholar 

  • Lamar RT, Larsen MJ, Kirk TK (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol 56(11):3519–3526

    CAS  Google Scholar 

  • Lambert M, Kremer S, Sterner O, Anke H (1994) Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrequinoides and their hydroxylated precursors in strain JK375. Appl Environ Microbiol 60:3597–3601

    CAS  Google Scholar 

  • Machado KMG, Matheus DR, Monteiro RTR, Bononi VLR (2005) Biodegradation of pentachlorophenol by tropical basidiomycetes in soils contaminated with industrial residues. World J Microbiol Biotechnol 21:297–301

    Article  CAS  Google Scholar 

  • Martinez M, Baeza J, Freer J, Rodriguez J (2000) Chlorophenol tolerant and degradative bacteria isolated from a river receiving pulp mill discharges. Toxicol Environ Chem 77:159–170

    Article  CAS  Google Scholar 

  • Máximo C, Pessoa MT, Costa-Ferreira M (2003) Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microbiol Technol 32:145–151

    Article  Google Scholar 

  • Mileski G, Bumpus J, Jurek M, Aust S (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889

    CAS  Google Scholar 

  • Minussi RC, De Moraes SG, Pastore GM, Duran N (2001) Biodecolorization screening of synthetic dyes by four white-rot fungi in a s olid medium: possible role of siderophores. Lett Appl Microbiol 33:21–25

    Article  CAS  Google Scholar 

  • Pallerla S, Chambers RP (1998) Reactor development for biodegradation of pentachlorophenol. Catal Today 40:103–111

    Article  CAS  Google Scholar 

  • Phillips R (1981) Mushrooms and other fungi of Great Britain & Europe. Editorial Pan Books, Milan, Italia

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Rapp P, Timmis KN (1999). Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp. strain PS14 in liquid cultures and in soil. Appl Environ Microbiol 65:2547–2552

    CAS  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    CAS  Google Scholar 

  • Ruckdeschel G, Renner G (1986) Effect of pentachlorophenol and some of its known and possible metabolites on fungi. Appl Environ Microbiol 51:1370–1372

    CAS  Google Scholar 

  • Ruckdeschel G, Renner G, Schwarz K (1987) Effects of pentachlorophenol and some of its known metabolites on different species of bacteria. Appl Environ Microbiol 53:2689–2692

    CAS  Google Scholar 

  • Sander P, Wittich RM, Fortnagel P, Wilkes H, Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol 57:1430–1440

    CAS  Google Scholar 

  • Schneider G (1996) Neue Testsysteme Untersuchung antagonistischer Pilze und Sekundärstoffe aus anyagonistischen und mycophilen Pilzen. Dissertation (D386), Universität Kaiserslautern

  • Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  CAS  Google Scholar 

  • Ullah M, Kadhim H, Rastall R, Evans C (2000) Evaluation of solid substrates for enzyme production by Coriolus vericolor, for use in bioremediation of chlorophenols in aqueus effluents. Appl Microbiol Biotechnol 54:832–837

    Article  CAS  Google Scholar 

  • Vetter W, Hahn ME, Tomy G, Ruppe S, Vatter S, Chahbane N, Lenoir D, Schramm KW, Scherer G (2005) Biological activity and physico-chemical parameters of the marine halogenated natural products 2,3,3′,4,4′,5,5′-heptachloro-2′-methyl-1,2′-bipyrrole (Q1) and 2,4,6-tribromoanisole (TBA). Arch Environ Contam Toxicol 48:1–9

    Article  CAS  Google Scholar 

  • Vitali VMV, Machado KMG, Andréa MM, Bononi VLR (2006) Screening mitosporic fungi for organochlorides degradation. Braz J Microbiol 37:256–261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Becerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donoso, C., Becerra, J., Martínez, M. et al. Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from chilean forestry . World J Microbiol Biotechnol 24, 961–968 (2008). https://doi.org/10.1007/s11274-007-9559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9559-4

Keywords

Navigation