Skip to main content
Log in

Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During growth on ferulic acid, Halomonas elongata DSM 2581T was capable of promoting the formation of a significant amount of vanillic acid. The products were confirmed by high-performance liquid chromatography and gas chromatography mass-spectrometry analyses. To enhance the formation of vanillic acid and prevent its degradation, a resting-cell method using Halomonas elongata was developed. The growth state of the culture utilized for biomass production, the concentration of the biomass, the amount of ferulic acid that was treated and the reutilization of the biomass were optimized. The optimal yield of vanillic acid (82%) was obtained after a 10-h reaction using 10 mM ferulic acid and 5 g/l of cell pregrown on ferulic acid and harvested at the end of the exponential phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelkafi S, Sayadi S, Ben Ali Gam Z, Casalot L, Labat M (2006a) Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262:115–120

    Article  CAS  Google Scholar 

  • Abdelkafi S, Labat M, Casalot L, Chamkha M, Sayadi S (2006b) Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolising bacterium that decarboxylates other cinnamic acids under hypersaline conditions. FEMS Microbiol Lett 255:108–114

    Article  CAS  Google Scholar 

  • Abdelkafi S, Chamkha M, Casalot L, Sayadi S, Labat M (2005a) Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252:79–84

    Article  CAS  Google Scholar 

  • Abdelkafi S, Chamkha M, Labat M, Sayadi S (2005b) Biosynthèse de l’acide p-hydroxyphénylacétique par une nouvelle souche Bacillus sp., isolée à partir des eaux de fermentations des olives de table tunisiennes. Microbiol Hyg Alim 17:37–42

    Google Scholar 

  • Allouche N, Sayadi S (2005) Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain. J Agric Food Chem 53:6525–6530

    Article  CAS  Google Scholar 

  • Allouche N, Damak M, Ellouz R, Sayadi S (2004) Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol 70:2105–2109

    Article  CAS  Google Scholar 

  • Alva V, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37:4397–4402

    Article  CAS  Google Scholar 

  • Andreoni V, Galli E, Galliani G (1984) Metabolism of ferulic acid by a facultatively anaerobic strain of Pseudomonas cepacia. Syst Appl Microbiol 5:299–304

    CAS  Google Scholar 

  • Andreoni V, Bernasconi S, Bestetti G (1995) Biotransformation of ferulic acid and related compounds by mutant strains of Pseudomonas fluorescens. Appl Microbiol Biotechnol 42:830–835

    Article  CAS  Google Scholar 

  • Argandona M, Fernández-Carazo R, Llamas I, Martínez-Checa F, Caba JM, Quesada E, Moral A (2005) The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. FEMS Microbiol Lett 244:69–74

    Article  CAS  Google Scholar 

  • Barghini P, Montebove F, Ruzzi M, Schisser A (1998) Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl Microbiol Biotechnol 49:309–314

    Article  CAS  Google Scholar 

  • Bonnin E, Brunel M, Gouy Y, Lesage-Meessen L, Asther M, Thibault JF (2001) Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. Enzym Microb Technol 28:70–80

    Article  Google Scholar 

  • Bouallagui Z, Sayadi S (2006) Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa Immobilized Resting Cells. J Agric Food Chem 54:9906–9911

    Article  CAS  Google Scholar 

  • Bouaziz M, Sayadi S (2005) Isolation and evaluation of antioxidants from leaves of a tunisian cultivar olive tree. Eur J Lip Sci Technol 107:497–504

    Article  CAS  Google Scholar 

  • Brunati M, Marinelli F, Bertolini C, Gandolfi R, Daffonchio D, Molinari F (2004) Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzym Microb Technol 34:3–9

    Article  CAS  Google Scholar 

  • Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A (2000) Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl Environ Microbiol 66:2311–2317

    Article  CAS  Google Scholar 

  • Donaghy JA, Kelly PF, McKay AM (1999) Conversion of ferulic acid to 4-vinylguaiacol by yeasts isolated from unpasteurised apple juice. J Sci Food Agric 79:453–456

    Article  CAS  Google Scholar 

  • Garcia MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109

    Article  CAS  Google Scholar 

  • Ghosh S, Sachan A, Kumar-Sen S, Mitra A (2007) Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J Ind Microbiol Biotechnol 34:131–138

    Article  CAS  Google Scholar 

  • Huang Z, Dostal L, Rosazza JPN (1993) Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J Biol Chem 268:954–958

    Google Scholar 

  • Larrouture-Thiveyrat C, Montel MC (2003) Effects of environmental factors on leucine catabolism by Carnobacterium piscicola. Int J Food Microbiol 81:177–184

    Article  CAS  Google Scholar 

  • Mitsukura K, Yoshida T, Nagasawa T (2002) Synthesis of (R)-2-phenylpropanoic acid from its racemate through an isomerase-involving reaction by Nocardia diaphanozonaria. Biotechnol Lett 24:1615–1621

    Article  CAS  Google Scholar 

  • Peng X, Misawa N, Harayama S (2003) Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl Environ Microbiol 69:1417–1427

    Article  CAS  Google Scholar 

  • Ruzzi M, Barghini P, Montebove F, Schiesser Ponente A (1997) Effect of the carbon source on the utilization of ferulic, m- and p-coumaric acids by a Pseudomonas fluorescens strain. Ann Microbiol 47:87–96

    CAS  Google Scholar 

  • Sayadi S, Allouche N, Jaoua M, Aloui F (2000) Determinal effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Proc Biochem 35:725–735

    Article  CAS  Google Scholar 

  • Sutherland J, Crawford D, Pometto A III (1983) Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257

    Article  CAS  Google Scholar 

  • Toms A, Wood J (1970) The degradation of trans-ferulic acid by Pseudomonas acidovorans. Biochemistry 9:337–343

    Article  CAS  Google Scholar 

  • Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. Lebensm-Wiss U-Technol 36:561–565

    Article  CAS  Google Scholar 

  • Unell M, Kabelitz N, Jansson JK, Heipieper HJ (2007) Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 266:138–143

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Bio Rev 62:504–544

    CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. Isolation of new sulphate reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. Arch Microbiol 129:395–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Imen Abdelkafi from CNRS for her help. We thank David Navarro from INRA for their help in GC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Sayadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkafi, S., Labat, M., Gam, Z.B.A. et al. Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells. World J Microbiol Biotechnol 24, 675–680 (2008). https://doi.org/10.1007/s11274-007-9523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9523-3

Keywords

Navigation