Skip to main content
Log in

Isolation and characterisation of phenol-degrading Pseudomonas aeruginosa MTCC 4996

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel indigenous Pseudomonas aeruginosa strain (MTCC 4996) isolated from a pulp industrial effluent-contaminated site was capable of degrading phenol up to a concentration of 1,300 mg L−1 within 156 h. Complete degradation was observed at pH values ranging from 6.0 to 10.0 and temperatures from 15 to 45°C, with an optimum pH of 7.0 and optimum temperature of 37°C. At an optimum shaking speed of 100–125 rpm, 100% degradation was observed in 66 h, as compared to 84 h under static conditions. Glucose and peptone at lower concentrations enhanced phenol degradation. The rate of phenol degradation was most sensitive to added Hg. Low concentrations of Fe, Cu, Pb, Zn, and Mn stimulated and enhanced the rate of degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksu S, Yener J (1998) Investigation of biosorption of phenol and monochlorianated phenols on the dried activated sludge. Process Biochem 33:649–655

    Article  CAS  Google Scholar 

  • Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR (1993) Dynamics of phenol degradation by Pseudomomas putida. Biotechnol Bioeng 41:572–580

    Article  CAS  Google Scholar 

  • Annadurai G, Mathalai Balan S, Murugesan T (1999) Box-Behnken design in the development of optimized complex medium for phenol degradation using Pseudomonas putida (NICM 2174). Bioprocess Eng 21:415–421

    CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Microbiological degradation of phenol using mixed liquors of Pseudomonas putida and activated sludge. Waste Manage 22:703–710

    Article  CAS  Google Scholar 

  • Armenante PM, Fava F, Kafkewitz D (1995) Effect of yeast extract on growth kinetics during aerobic biodegradation of chlorobenzoic acid. Biotechnol Bioeng 47:227–233

    Article  CAS  Google Scholar 

  • Barkay T (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Appl Environ Microbiol 53:2725–2732

    CAS  Google Scholar 

  • Bulbul G, Aksu Z (1997) Investigation of wastewater treatment containing phenol using free and Ca-alginated gel immobilized Pseudomonas putida in a batch stirred reactor. Turkish J Eng Environ Sci 21 175–181

    CAS  Google Scholar 

  • Caturla F, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R (1998) Adsorption of substituted phenols on activated carbon. J Coll Interface Sci 124:528–534

    Article  Google Scholar 

  • Chitra S (1995) Studies on biodegradation of phenolic compounds by Pseudomonas pictorum. PhD thesis CLRI, University of Madras, Chennai-25

  • Chung TS, Loh K-C, Tay HL (1998) Development of polysulfone membranes for bacteria immobilization to remove phenol. J Appl Polym Sci 70:2585–2594

    Article  CAS  Google Scholar 

  • Chung TP, Tseng HY, Juang RS (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38:1497–1507

    Article  CAS  Google Scholar 

  • Chun-Wei K, Barbara RSG (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62:2317–2323

    Google Scholar 

  • Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285

    CAS  Google Scholar 

  • Gupta VK, Sharma S, Yadav IS, Mohan D (1998) Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and P-nitrophenol from wastewater. J Chem Technol Biotechnol 71:180–186

    Article  CAS  Google Scholar 

  • Hill GA, Robinson CW (1975) Substrate inhibition kinetics: phenol degradation by Pseudomonos Putida. Biotechnol Bioeng 17:1599–1615

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1989) Metal toxicity. In: Hughes MN, Poole RK (eds) Metals and microorganisms. Chapman and Hall, New York, pp 252–302

    Google Scholar 

  • Kim JW, Armstrong ME (1981) A comprehensive study on the biological treatabilities of phenol and methanol II. The effects of temperature, pH salinity and nutrients. Water Res 15:1233–1247

    Article  CAS  Google Scholar 

  • Kobayashi W, Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170–183

    Article  Google Scholar 

  • Kotresha D (2005) Phenol: Biotechnological approaches in microbial degradation and stress responses in crop plants. PhD thesis, Gulbarga University, Gulbarga, India

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    CAS  Google Scholar 

  • Lob KC, Tar PP 2000 Effect of additional carbon sources on biodegradation of phenol. Bull Environ Contam Toxicol 64:756–763

    Article  Google Scholar 

  • Loh KC, Wang SJ (1998) Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation 8:329–338

    Article  CAS  Google Scholar 

  • Loh KC, Chung TS, Wei-Fern A (2000) Immobilized cell membrane bioreactor for high strength phenol wastewater. J Environ Eng 126:75–79

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1997) Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol Ecol 24:243–249

    Article  CAS  Google Scholar 

  • Masque C, Nolla M, Bordons A (1987) Selection and adaptation of a phenol degrading strain of Pseudomonas. Biotechnol Lett 9:655–660

    Article  CAS  Google Scholar 

  • Mergeary M, Nies D, Schlegel HG, Gerits J, Charles P, van Gi-jsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemohthotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:123–135

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Pakula A, Bieszkiewicz E, Boszczyk Maleszak H, Mycielski R (1999) Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant. Acta Microbiol Pol 48:373–380

    CAS  Google Scholar 

  • Papanastasious AC (1982) Kinetics of biodegradation of 2,4-Dichlorophenoxyacetate in the presence of glucose. Biotechnol Bioeng 24:2001–2011

    Article  Google Scholar 

  • Paraskevi NP, Euripides GS (2005) Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation 16:403–413

    Article  Google Scholar 

  • Rengaraj S, Seung-hyeon Moon, Sivabalan R, Arabindoo B, Murugesan V (2002) Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage 22:543–548

    Article  CAS  Google Scholar 

  • Robertson BK, Alexander M (1992) Influence of calcium, iron and pH on phosphate availability for microbial mineralization of organic chemicals. Appl Environ Microbiol 58:38–41

    CAS  Google Scholar 

  • Saha NC, Bhunia F, Kaviraj A (1999) Toxicity of phenol to fish and aquatic ecosystems. Bull Environ Contam Toxicol 63:195–971

    Article  CAS  Google Scholar 

  • Satsangee R, Ghosh P (1990) Anaerobic degradation of phenol using an acclimated mixed culture. Appl Microbiol Biotechnol 34:127–130

    Article  CAS  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel–cobalt–cadmium resistance encoded by the ncc locus of Alcaligenes Xylosoxidans 31A. J Bacteriol 176:7045–7054

    CAS  Google Scholar 

  • Singleton I (1994) Microbial metabolism of xenobiotics: fundamental and applied research. J Chem Technol Biotechnol 59:9–23

    Article  CAS  Google Scholar 

  • Soda S, Ike M, Fujita M (1998) Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol. J Ferment Bioeng 86:90–96

    Article  CAS  Google Scholar 

  • Sterritt RM, Lester JN (1980) Interactions of heavy metals with bacteria. Sci Total Environ 14:5–17

    Article  CAS  Google Scholar 

  • Sung RH, Soydoa V, Hiroaki O (2000) Biodegradation by mixed microorganism of granular activated carbon loaded with a mixture of phenols. Biotechnology Lett 22:1093–1096

    Article  Google Scholar 

  • Topp E, Hanson RS (1990) Degradation of pentachlorophenol by a Flavobacterium species grown in continuous culture under various nutrient limitations. Appl Environ Microbiol 56:541–544

    CAS  Google Scholar 

  • Topp E, Crawford RL, Hanson RS (1988) Influence of readily metabolisable carbon on pentachlorophenol-degrading Flavobacterium sp. Appl Environ Microbiol 54:2452–2459

    CAS  Google Scholar 

  • Trevors J, Oddie K, Belliveau B (1985) Metal resistance in bacteria. FEMS Microbiol Rev 32:39–54

    Article  CAS  Google Scholar 

  • Wallace J (1991) Phenol. In: Kroschwitz JI (ed) Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, New York, pp 592–602

    Google Scholar 

  • Wang SJ, Loh KC (1999) Modelling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme Microb Technol 25:177–184

    Article  Google Scholar 

  • Yoo J-Y, Choi J, Leer T, Park J-W (2004) Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water Air Soil Pollut 154:225–237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kotresha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotresha, D., Vidyasagar, G.M. Isolation and characterisation of phenol-degrading Pseudomonas aeruginosa MTCC 4996. World J Microbiol Biotechnol 24, 541–547 (2008). https://doi.org/10.1007/s11274-007-9508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9508-2

Keywords

Navigation