Skip to main content
Log in

Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A kraft lignin-degrading bacterium (ITRC S 7 ) was isolated from sludge of pulp and paper mill and characterized as Aneurinibacillus aneurinilyticus by biochemical tests and 16SrRNA gene sequencing. The bacterium did not utilize kraft lignin (KL) as the sole source of carbon and energy. However, this strain reduced the color (58%) and lignin content (43%) from kraft lignin-mineral salt medium when supplemented with glucose at pH 7.6 and 30°C after 6 days. The degradation on addition of glucose in culture medium is clear evidence of co-metabolism of KL by A. aneurinilyticus. The analysis of lignin degradation products by GC-MS in ethyl acetate extract from an A. aneurinilyticus-inoculated sample revealed the formation of low molecular weight aromatic compounds such as guaiacol, acetoguaiacone, gallic acid and ferulic acid, indicating that the bacterium can oxidize of the sinapylic (G units) and coniferylic (S units) alcohol units which are the basic moieties that build the hardwood lignin structure. The low molecular weight aromatic compounds identified in extracts of the inoculated sample favors the idea of biochemical modification of the KL to a single aromatic unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

KL:

Kraft lignin

MSM:

Mineral salt medium

KL-MSM:

Kraft lignin amended mineral salt medium

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amman R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cell without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Bajpai P, Mehna A, Bajpai PK (1993) Decolorization of kraft bleach plant effluent with the white rot fungus Trametes versicolor. Process Biochem 28:377–384

    Article  CAS  Google Scholar 

  • Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, Cambridge

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Nat Acad Sci USA 75:4801–4805

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Indust Crops Prod 20:131–141

    Article  CAS  Google Scholar 

  • Faulds CB, Bartolome B, Williamson G (1997) Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Indust Crops Prod 6:367–374

    Article  CAS  Google Scholar 

  • Fiechter A (1982) Bioalteration of kraft pine lignin by Phanerochaete chrysosporium. Arch Microbiol 132:14–21

    Article  Google Scholar 

  • Forney LJ, Reddy CA (1979) Bacterial degradation of kraft lignin. Dev Indust Microbiol 20:163–175

    Google Scholar 

  • Gonzalez B, Merino A, Almeida M, Vicna R (1986) Comparative growth of natural bacterial isolates on various lignin-related compounds. Appl Environ Microbiol 52:1428–1432

    PubMed  CAS  Google Scholar 

  • Graf E (1992) Antioxidant potential of ferulic acid. J Free Radic Biol Med 13:435–448

    Article  CAS  Google Scholar 

  • Gupta VK, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. J Chem Technol Biotechnol 76:547–552

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hedges JL, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178

    Article  CAS  Google Scholar 

  • Hernandez M, Hernandez-Coronado MJ, Montiel MD, Rodriguez J, Arias ME (2001) Analysis of alkali-lignin in a paper mill effluent decolorised with two Streptomyces strains by gas chromatography-mass spectrometry after cupric oxide degradation. J Chromatogr A 919:389–394

    Article  CAS  Google Scholar 

  • Hernandez M, Rodriguez J, Perez MI, Ball AS, Arias ME (1997) 13C NMR cross polarization and magic angle spinning (CPMAS) and gas chromatography/mass spectroscopy analysis of the products from a soda pulp mill effluent decolorised with two Streptomyces strains. Appl Microbiol Biotechnol 74:272–278

    Google Scholar 

  • Hernandez-Coronado MJ, Hernandez M, Rodriguez J, Arias ME (1998) Gas chromatography/mass spectrometry as a suitable alternative technique to evaluate the ability of Streptomyces to degrade lignin from lignocellulosic residues. Rapid Commun Mass Spectrom 12:1744–1748

    Article  CAS  Google Scholar 

  • Kapley A, Lampel K, Purohit HJ (2001) Development of Duplex PCR for Salmonella and Vibrio. World J Microbiol Biotechnol 16:457–58

    Article  Google Scholar 

  • Kern HW, Kirk TK 1987 Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Appl Microbiol Biotechnol 53:2242–2246

    CAS  Google Scholar 

  • Ksibi M, Amor SB, Cherif S, Elaloui E, Houas A, Elaloui M (2003) Photodegradation of lignin from black liquor using UV/TiO2 system. J Photochem Photobiol A Chem 154:211–218

    Article  CAS  Google Scholar 

  • Lundquist K, Kirk TK (1971) Acid degradation of lignin. Acta Chem Scand 25:889–894

    Article  PubMed  CAS  Google Scholar 

  • Masai E, Shinohara S, Hara H, Nishikawa S, Katayama Y, Fukuda M (1999) Genetic and biochemical characterization of a 2-pyrone-4, 6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181:55–62

    PubMed  CAS  Google Scholar 

  • Morii H, Nakamiya K, Kinoshita S (1995) Isolation of a lignin-decolorizing bacterium. J Ferment Bioeng 80:296–299

    Article  CAS  Google Scholar 

  • Narde G, Kapley A, Purohit HJ (2004) Isolation and characterization of Citrobacter strain HPC 255 for broad range substrate specificity for chlorophenol. Curr Microbiol 48:419–423

    Article  PubMed  CAS  Google Scholar 

  • Perestelo F, Falcon MA, Carnicero A, Rodriguez A, de la Fuente G (1994) Limited degradation of industrial, synthetic and natural lignins by Serratia marcescens. Biotechnol Lett 16:299–302

    Article  CAS  Google Scholar 

  • Perestelo F, Falcon MA, Perez ML, Roig EC, de la Fuente Martin G (1989) Bioateration of kraft pine lignin by Bacillus megaterium isolated from compost piles. J Ferment Bioeng 68:151–153

    Article  CAS  Google Scholar 

  • Perestelo F, Rodriguez A, Perez R, Carnicero A, de la Fuente G, Falcon MA (1996) Isolation of a bacterium capable of limited degradation of industrial and labelled, natural and synthetic lignins. World J Microbiol Biotechnol 12:111–112

    Article  CAS  Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das vitamin B-12-bedurbins phototropher schwefelbacterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  • Raj A, Chandra R (2004) Comparative analysis of physico-chemical and bacteriological parameters of kraft and pulp paper mill effluents. Indian J Environ Protect 24:481–489

    CAS  Google Scholar 

  • Shin KS, Lee YJ (1999) Depolymerisation of lignosulfonate by peroxidase of the white-rot basidiomycete, Pleurotus ostreatus. Biotechnol Lett 21:585–588

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzymes from himenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  ADS  CAS  Google Scholar 

  • Trojanowski J, Haider K, Sundman V (1977) Decomposition of 14C-labelled lignin and phenols by a Nocardia sp. Arch Microbiol 114:149–153

    Article  PubMed  CAS  Google Scholar 

  • Ulmer DC, Leisola MSA, Schmidt BH, Fiechter A (1983) Rapid degradation of isolated lignins by Phanerochaete chrysosporium. Appl Environ Microbiol 45:1795–1801

    PubMed  CAS  Google Scholar 

  • Vicuna R (1988) Bacterial degradation of lignin. Enzyme Microb Technol 10:646–655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. C.M. Gupta, Director, Industrial Toxicology Research Centre, for encouragement and U.P-CST for providing financial assistance for this study. The authors are also thankful to Dr. Jai Raj Behari, Head, Analytical Chemistry Section for his suggestions in the characterization of lignin degradation products by GC-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, A., Chandra, R., Reddy, M. et al. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J Microbiol Biotechnol 23, 793–799 (2007). https://doi.org/10.1007/s11274-006-9299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9299-x

Keywords

Navigation