Skip to main content
Log in

Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing Neem tree bark

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Pharmaceutically important γ-linolenic acid (GLA) was produced (4.1 mg g−1 dry wt) by laboratory grown cyanobacterium Fischerella sp. colonizing Neem (Azadirachta indica) tree bark. GLA isolated from the test cyanobacterium was active against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25992, Salmonella typhi (local strain), Pseudomonas aeruginosa ATCC 27853 and Enterobacter aerogenes MTCC 2822. The overproduction of GLA was also monitored by altering phosphate and nitrate levels in the nutrient medium. A doubling in phosphate concentration (58 μM) increased GLA level up to 12% over that of control cells while half of this phosphate level reduced GLA synthesis by 8%. In contrast, elevated nitrate concentrations (5 and 10 mM) stimulated biomass yield but not GLA, as the levels approximated to the nitrate-lacking control. The antibacterial potential of GLA from Fischerella sp. grown at varying P or N levels was at variance as evidenced by the diameter of inhibition zones against S. aureus. This variation in inhibition zones reflected differing levels of GLA as ascertained quantitatively by HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer A.W., Kirby W.M., Sherris J.C., Turck M., 1966 Antibiotic susceptibility testing by a standardized single disk method American Journal of Clinical Pathology 45:493–496

    CAS  Google Scholar 

  • Becker E.W., 1994 Microalgae. Biotechnology and Microbiology Cambridge University Press, Cambridge. ISBN 0-521-35020-4

    Google Scholar 

  • Bligh E.G., Dyer J.W., 1959 A rapid method of total lipid extraction and purification Canadian Journal of Biochemistry and Physiology 37:911–917

    CAS  Google Scholar 

  • Carter J.P., 1988 Gamma-linolenic acid as a nutrient Food Technology 42:72–82

    CAS  Google Scholar 

  • Carvalho P.O., Oliveira J.D. de, Pastore G.M., 1999 Enhancement of γ-linolenic acid production by the fungus Mucor sp LB-54 by growth temperature Revista de Microbiologia 30:170–176

    Article  CAS  Google Scholar 

  • Cohen, Z. 1997 The chemicals of Spirulina. In Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology, ed. Vonshak A. pp.175–204, Taylor & Francis ISBN 0-7484-0674-3

  • Cohen Z., Didi S., Heimer Y.M., 1992 Overproduction of γ-linolenic acid and eicosapentaenoic acids by algae Plant Physiology 98:569–572

    CAS  Google Scholar 

  • Cohen Z., Vonshak A., Richmond A., 1987 Fatty acid composition of Spirulina strains grown under various environmental conditions Phytochemistry 26:2255–2258

    Article  CAS  Google Scholar 

  • Costa J.A.V., Cozza K.L., Oliveira L., Magagnin G., 2001 Different nitrogen sources and growth responses of Spirulina platensis in microenvironments World Journal of Microbiology and Biotechnology 17:439–442

    Article  CAS  Google Scholar 

  • Desikachary T.V., 1959. Cyanophyta. ICAR Publication, India. 599 pp

    Google Scholar 

  • Galanina L.A., Bekhtereva M.N., Pavlova T.A., Tsvetkova E.V., 1988 Utilization of individual monosaccharides from their mixtures by the microscopic fungus Cunninghamella japonica and its effect on lipid synthesis Mikrobiologiya 57:213–217

    CAS  Google Scholar 

  • Gerloff G.C., Fitzgerald G.P., Skoog F., 1950 The isolation, purification and culture of blue-green algaeAmerican Journal of Botany 27:216–218

    Article  Google Scholar 

  • Hansson L., Dostálek M., 1988 Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella romanniana. Applied Microbiology and Biotechnology 28:240–246

    Article  CAS  Google Scholar 

  • Healey F.P., 1982 Phosphate. In: Carr N.G., Whitton B.A., (eds). The Biology of Cyanobacteria. Alden Press, Oxford. pp.105–124. ISBN 0-632-00695-I

    Google Scholar 

  • Horrobin D.F., Huang Y.S., 1987 The role of linolenic acid and its metabolites in the lowering of plasma cholesterol and the prevention of cardiovascular disease International Journal of Cardiology 17:241–255

    Article  CAS  Google Scholar 

  • Horrobin D.F., Manku M.S., 1983 How do polyunsaturated fatty acids lower plasma cholesterol levels? Lipids 18:558–562

    Article  CAS  Google Scholar 

  • Hudson B.J.F., Karris I.G., 1974 The lipids of the alga Spirulina Journal of Science and Food Agriculture 25:759–763

    Article  CAS  Google Scholar 

  • Kaneko, T., Nakamura, Y., Wolk, C.P., Kuritz, T., Sasamoto, S., Watanabe, A., Iriguchi, M., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kohara, M., Matsumoto, M., Matsuno, A., Muraki, A., Nakazaki, N., Shimpo, S., Sugimoto, M., Takazawa, M., Yamada, M., Yasuda, M. & Tabata, S. 2001 Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. DNA Research 8, 205–213 227–253

    Google Scholar 

  • Kendrick A., Ratledge C., 1992 Lipid formation in ther oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids Applied Microbiology and Biotechnology 37:18–22

    Article  CAS  Google Scholar 

  • Manabe E., Hirano M., Takano H., Ishikawa-Doi N., Sode K., Matsunaga T., 1992 Influence of ammonium chloride on growth and fatty acid production by Spirulina platensis Applied Biochemistry and Biotechnology 34:273–281

    Article  Google Scholar 

  • Mundt S., Kreitlow S., Nowotny A., Effmert U., 2001 Biochemical and pharmacological investigations of selected cyanobacteria International Journal of Hygiene and Environmental Health 203:327–334

    Article  CAS  Google Scholar 

  • Murakami N., Yamada N., Sakakibara J., 1990 An autolytic substance in a fresh water cyanobacterium Phormidium tenue Chemical and Pharmaceutical Bulletin, Tokyo 38:812–814

    CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (1997) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approved standard. M7-A4. Villanova (PA). ISBN 1-56238309-4

  • Nichols B.W., Wood B.J.B., 1968 The occurrence and biosynthesis of gamma-linolenic acid in a blue-green alga, Spirulina platensis Lipids 3:46–50

    Article  CAS  Google Scholar 

  • Ohta S., Shiomo Y., Kawashima A., Aozasa O., Teruyuki N., 1995 Antibiotic effect of linolenic acid from the Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus Journal of Applied Phycology 7:121–127

    Article  CAS  Google Scholar 

  • Pelloquin A., Lai R., Busson F., 1970 Etude comparee des lipids, de Spirulina platensis (Gom.) Geitler et de Spirulina geitleri J. de Toni. Comptes Rendues Hebdomaires des Séances de l’Academie des Sciences, Paris 271:932–935

    CAS  Google Scholar 

  • Phillips J.C., Huang Y.-S., 1996 Natural sources and biosynthesis of γ-linolenic acid: an overview. In: Huang Y.-S., Mills D.E., (eds). γ-Linolenic acid Metabolism and its Roles in Nutrition and Medicine. AOCS Press, Champagne, Illinois. pp.1–13. ISBN 0-93531568-3

    Google Scholar 

  • Piorreck M., Baasch K.-H., Pohl P., 1984 Biomass production, total protein, chlorophylls, lipids and fatty acids of fresh water green and blue-green algae under different nitrogen regimes Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Puolakka J., Mäkäräinen L., Viinikka L., Ylikorkala O., 1985 Biochemical and clinical effects of treating the premenstrual syndrome with prostaglandin synthesis precursors Journal of Reproductive Medicine 30:149–153

    CAS  Google Scholar 

  • Reddy A.S., Nuccio M.L., Gross L.M., Thomas T.L., 1993 Isolation of a Δ6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC6803 by gain of function expression in Anabaena sp. strain PCC7120 Plant Molecular Biology 22:293–300

    Article  CAS  Google Scholar 

  • Reddy A.S., Thomas T.L., 1996 Expression of a cyanobacterial D6-desaturase gene results in gamma-linolenic acid production in transgenic plantsNature Biotechnology 14:638–642

    Google Scholar 

  • Sayanova O., Smith M.A., Lapinskas P., Stobart K., Dobson G., Christie W.W., Shewry P.R., Napier J.A., 1997 Expression of a borage desaturase cDNA containing an N-terminal cytochrome b 5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco. Proceedings of the National Academy of Sciences, USA 94:4211–4216

    Article  CAS  Google Scholar 

  • Schalin-Karrila M., Mattila L., Jansen C.T., Uotila P., 1987 Evening primrose oil in the treatment of atopic eczema: effect on clinical status, plasma phospholipid fatty acid and circulating blood prostaglandins British Journal of Dermatology 117:11–19

    Article  CAS  Google Scholar 

  • Shin Y.C., Shin H.K., 1988 Screening of γ-linolenic acid producing fungi Korean Journal of Food Science and Technology 20:724–731

    CAS  Google Scholar 

  • Wada H., Murata N., 1990 Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803 Plant Physiology 92:1062–1069

    Article  CAS  Google Scholar 

  • Yamada N., Murakami N., Motimoto T., Sakakibara J., 1993 Auto-growth inhibitory substance from the fresh water cyanobacterium Phormidium tenue Chemical and Pharmaceutical Bulletin Tokyo 41:1863–1865

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Head and Programme Coordinator, Centre of Advanced Study in Botany, Banaras Hindu University for laboratory facilities and Head, RSIC, CDRI, Lucknow for HPLC. Financial support from CSIR, New Delhi to AS (CSIR-Fellowship Award No.9/13 (1032) EMR-I) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Asthana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asthana, R.K., Srivastava, A., Kayastha, A.M. et al. Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing Neem tree bark. World J Microbiol Biotechnol 22, 443–448 (2006). https://doi.org/10.1007/s11274-005-9054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9054-8

Keywords

Navigation