Skip to main content
Log in

Decomposition and nitrogen dynamics of Rhynchospora asperula in floating soils of Esteros del Iberá, Argentina

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

In floating soils, organic matter accumulation is the result of the imbalance between decomposition rate and macrophytes’ production, and it can limit nutrient availability. In this study, we determined the percentage of litter that is added to the floating soil in one year and the nitrogen dynamics of Rhynchospora asperula (Nees) Steud (Cyperaceae), an abundant species in Esteros del Iberá, a South American wetland with extended areas of floating soils. According to the decomposition rate determined (k = 0.0032 day−1), the annual percentage of mass lost was 69%. Conditions of the floating soil were simulated in a 146-day field experiment. The results show that the decomposition rate was higher when the litter was in water contact, and the mass loss in the field sampling at the beginning of the decomposition was similar to that of the treatments that simulated this condition. The nitrogen concentration in the aboveground biomass was almost constant, and the results indicate that there was translocation from the senescent leaves, but not a preferential nitrogen translocation from the rhizomes and roots. During summer the maximum biomass and the low nitrogen concentration in the floating soil coincide, but the nitrogen intake by the aboveground biomass was only 4% of the total nitrogen content of the floating soil. Nitrogen concentration in the litter increased and, though immobilization cannot be ruled out, there was net mineralization. The nitrogen mineralized in the first decomposition year was 30% of the nitrogen added to aboveground biomass during the study period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1995) The advantage of being evergreen. Tree 10:402–407

    Google Scholar 

  • Aerts R, De Caluwe H (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78:244–260

    Google Scholar 

  • Aerts R, Verhoeven JTA, Whigham DF (1999) Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80:2170–2181

    Article  Google Scholar 

  • Anderson JT, Smith LM (2002) The effect of flooding regimes on decomposition of Polygonum pensylvanicum in playa wetlands (Southern Great Plain, USA). Aquat Bot 74:97–108

    Article  Google Scholar 

  • Barik SK, Mishra S, Ayyappan S (2000) Decomposition patterns of unprocessed and processed lignocellulosics in a freshwater fish pond. Aquat Ecol 34:185–204

    Article  CAS  Google Scholar 

  • Bonetto AA, Neiff JJ (1981) Algunas consideraciones relativas a distintas estrategias de manejo del macrosistema Iberá. Ín: Investigaciones Ecológicas en el Macrosistema Iberá. IVA-CECOAL (Informe final)

  • Bonetto C, de Cabo L, Gabellone N, Vinocur A, Donadelli J, Unrein F (1994) Nutrient dynamics in the floodplain of the Lower Paraná River. Arch Hydrobiol 131(3):277–295

    CAS  Google Scholar 

  • Bouchard V, Lefeuvre JC (2000) Primay production and macro-detritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquat Bot 67:23–42

    Article  CAS  Google Scholar 

  • Boulton A, Boon P (1991) A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Austr. J Mar Freshw Res 42:1–43

    Article  CAS  Google Scholar 

  • Bowden W (1987) The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348

    Article  CAS  Google Scholar 

  • Bridgham SD, Richardson CJ (1993) Hydrology and nutrient gradients en North Carolina peatlands. Wetlands 13(3):207–218

    Article  Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Article  Google Scholar 

  • Bruquetas de Zozaya IY, Neiff JJ (1991) Decomposition and colonization by invertebrates of Typha latifolia L litter in Chaco cattail swamp (Argentina). Aquat Bot 40:185–193

    Article  Google Scholar 

  • Carignan C, Neiff JJ (1992) Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17:85–121

    Article  CAS  Google Scholar 

  • Cartaxana P, Catarino F (2002) Nitrogen resorption from senescing leaves of three salt marsh plant species. Plant Ecol 159:95–102

    Article  Google Scholar 

  • Chimmer R, Ewel K (2005) A tropical freshwater wetland: II. Production, decomposition and peat formation. Wetlands Ecol Manage 13:671–684

    Article  Google Scholar 

  • Conner WH, Day J W Jr (1991) Leaf litter decomposition in three Lousiana freshwater forested wetland areas with different flooding regimes. Wetlands 11:303–312

    Article  Google Scholar 

  • Cózar A, García CM, Gálvez JA (2003) Limnología de las lagunas Iberá y Galarza. 117–142. In: Canziani G, Rossi C, Loiselle S, Ferrati R (eds) Los Esteros del Iberá. Informe del Proyecto “El manejo sustentable de humedales en el Mercosur”, Fundación Vida Silvestre Argentina, Buenos Aires, Argentina, 258 pp

  • Day JH, Rennie PJ, Stanek W, Raymond GP (1979) Peat testing manual technical memorandum 125. National Research Council of Canada, Associate Committee on Geotechnical Research, Ottawa

  • Ennabili A, Mohammed A, Radoux M (1998) Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat Bot 62:45–56

    Article  Google Scholar 

  • Ferrati R, Canziani GA, Ruiz Moreno D (2005) Esteros del Ibera: hydrometeorological and hydrological characterization. Ecol Model 186:3–15

    Article  Google Scholar 

  • Gantes P, Torremorell A (2005) Production and decomposition in floating soils of the Iberá wetlands (Argentina). Limnetica 24:203–210

    Google Scholar 

  • Gantes P, Sánchez Caro A, Casset M A, Torremorell A (2003) Nutrientes en vegetación y sedimento de la laguna Iberá. 143-153. In: Canziani G, Rossi C, Loiselle S, Ferrati R (eds) Los Esteros del Iberá. Informe del Proyecto “El manejo sustentable de humedales en el Mercosur”, Fundación Vida Silvestre Argentina, Buenos Aires, Argentina, 258 pp

  • Gantes P, Sánchez Caro A, Momo F, Casset MA, Torremorell A (2005) An approximation to the nitrogen and phosphorus budgets in floating soils of a subtropical peatland (Iberá, Argentina). Ecol Model 186:77–83

    Article  CAS  Google Scholar 

  • Giroux J-F, Bédard J (1987) Factors influencing aboveground production of Scirpus marshes in the St Lawrence estuary, Québec, Canada. Aquat Bot 29(3):195–204

    Article  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis. Apparatus, reagents, procedures, and some applications. U.S. Department of Agriculture Handbook No. 379

  • Hamersley MR, Howes BL, White DS, Johnke S, Young D, Peterson SB, Teal JM (2001) Nitrogen balance and cycling in an ecologically engineered septage treatment system. Ecol Eng 18:61–75

    Article  Google Scholar 

  • Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest. Ecosystems 3:484–494

    Article  CAS  Google Scholar 

  • Hogg EH, Wein RW (1987) Growth dynamics of floating Typha mats: seasonal translocation and internal deposition of organic material. Oikos 50:197–205

    Article  Google Scholar 

  • Hopkinson CS Jr (1992) A comparison of ecosystem dynamics in freshwater wetlands. Estuaries 15:549–562

    Article  CAS  Google Scholar 

  • Hume NP, Fleming MS, Horne AJ (2002) Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Sci Soc Am J 66:1706–1712

    Article  CAS  Google Scholar 

  • Ibañez C, Day JW, Jr Pont D (1999) Primary production and decomposition of wetlands of the Rhone Delta, France: interactive impacts of human modifications and relative sea level rise. J Cost Res 15:717–731

    Google Scholar 

  • Jonasson S, Shaver GR (1999) Within-stand nutrient cycling in arctic and boreal wetland. Ecology 80:2139–2150

    Article  Google Scholar 

  • Kansiime F, Saunders MJ, Loiselle SA (2007) Functioning and dynamics of wetland vegetation of Lake Victoria: an overview. Wetlands Ecol Manage 15:443–451

    Article  Google Scholar 

  • Kuehn KA, Suberkropp K (1998) Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus. Freshw Biol 40:717–727

    Article  Google Scholar 

  • Lee AA, Bukaveckas PA (2002) Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquat Bot 74:273–285

    Article  CAS  Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD, Linkins AE (1984) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull Mar Sci 35:341–356

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands. 3rd, Wiley, New York

    Google Scholar 

  • Neckles HA, Neill C (1994) Hydrology control of litter decomposition in seasonally fooded prairie marshes. Hydrobiologia 286:155–165

    Article  CAS  Google Scholar 

  • Neiff JJ (1990) Aspects of productivity in the lower Paraná and Paraguay riverine system. Acta Limnol Brasil 3:77–113

    Google Scholar 

  • Nogueira F, Esteves FA (1993) Changes in nutritional value of Scirpus cubensis during growth and decomposition. Int J Ecol Environ Sci 19:205–212

    Google Scholar 

  • Nogueira F, Esteves FA, Prast AE (1996) Nitrogen and phosphorous concentration of different structures of the aquatic macrophyte Eichhornia azurea kunth and Scirpus cubensis Poepp and Kunth in relation to water level variation in Lagoa Infernao (Sao Paulo, Brazil). Hydrobiol 328(3):199–205

  • Olde Venterink H, Pieterse NM, Belgers JDM, Wassen MJ, De Ruiter PC (2002) N, P, K, budgets along nutrient availability and productivity gradients in wetlands. Ecol Appl 12:1010–1026

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Osborne TZ, Inglett PW, Reddy KR (2007) The use of senescent plant biomass to investigate relationships between potential particulate and dissolved organic matter in a wetland ecosystem. Aquat Bot 86:53–61

    Article  Google Scholar 

  • Poi de Neiff ASG, Neiff JJ, Casco SL (2006) Leaf litter decomposition in three wetlands of the Paraná River floodplain. J Soc Wetland Sci 26:557–565

    Google Scholar 

  • Pozo J (1993) Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain). I. Chemical changes. Arch Hydrobiol 127:299–317

    Google Scholar 

  • Richardson CJ, Ferrell GM, Vaithiyanathan P (1999) Nutrient effects on stand structure, resorption efficiency, and secondary compounds in everglades sawgrass. Ecology 80(7):2182–2192

    Article  Google Scholar 

  • Sabattini RA (1985) Dinámica y productividad de Paspalum repens Bergius (“canutillo”) en un ambiente lenítico del valle aluvial del río Paraná. Rev Hidrobiol Trop 18:3–11

    Google Scholar 

  • Sasser CE, Gosselink JG (1984) Vegetation and primary production in a floating freshwater marsh in Lousiana. Aquat Bot 20:245–255

    Google Scholar 

  • STATISTICA (1999) StatSoft, Inc. STATISTICA for Windows

  • Szumigalski AR, Bayley SE (1996) Decomposition along a moderate-rich fen-marsh peatland gradient in boreal Alberta, Canada. Can J Bot 74:573–581

    Google Scholar 

  • Thormann MN, Bayley SE (1997) Aboveground plant production and nutrient content of the vegetation in six peatlands in Alberta, Canada. Plant Ecol 131:1–16

    Article  Google Scholar 

  • Thormann MN, Szumigalski AR, Bayley SE (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands 19:305–317

    Article  Google Scholar 

  • Titus JE, Pagano AM (2002) Decomposition of litter from submersed macrophytes: the indirect effects of high [CO2]. Freshw Biol 47:1367–1375

    Google Scholar 

  • Torremorell A (2004) Descomposición de Rhynchospora asperula en embalsados de Iberá. Tesis de Licenciatura. Universidad Nacional de Luján, Luján, Buenos Aires, Argentina, 96 pp

  • van Dam AA, Dardona A, Kelderman P, Kansiime F (2007) A simulation model for nitrogen retention in a papyrus wetland near Lake Victoria, Uganda (East Africa). Wetlands Ecol Manage 15:469–480

    Article  CAS  Google Scholar 

  • van der Peijl MJ, Verhoeven JTA (1999). A model of carbon, nitrogen and phosphorus dynamics and their interactions in river marginal wetlands. Ecol Model 118(2–3):95–130

    Google Scholar 

  • van der Peijl MJ, Verhoeven JTA (2000) Carbon, nitrogen and phosphorus cycling in river marginal wetlands; a model examination of landscape geochemical flows. Biogeochemistry 50(1):45–71

    Article  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101(3):664–669

    Article  Google Scholar 

  • Verhoeven JTA (1986) Nutrient dynamics in minerotrophic peat mires. Aquat Bot 25:117–137

    Article  Google Scholar 

  • Villar CA (1993) Producción primaria de macrófitas y su relación con el río en el Delta del Paraná. Seminario de Licenciatura. Universidad de Buenos Aires

  • Villar C, De Cabo L, Vaithiyanathan P, Bonetto C (1999) Porewater N and P concentration in a floodplain marsh of the Lower Paraná River. Golterman H (ed) Sediment-water interaction 9. Hydrobiologia 392:65–71

    Google Scholar 

  • Villar CA, De Cabo L, Vaithiyanathan P, Bonetto C (2001) Litter decomposition of emergent macrophytes in a floodplain marsh of the lower Paraná River. Aquat Bot 70:105–116

    Article  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Westlake D F (1965) Some basic data for investigations of the productivity of aquatic macrophytes. Men Ist Ital Idrobiol 8(suppl):229–248

    Google Scholar 

  • Wetzel RG, Howe MJ (1999) High production in a herbaceous perennial plant achieved by continuous growth and synchronized population dynamics. Aquat Bot 64(2):111–129

    Article  Google Scholar 

  • White DS, Howes BL (1994) Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnol Oceanogr 39(8):1878–1892

    Google Scholar 

  • Zar JH (1996) Biostatistical analisys, 3edn. Prentice-Hall, Inc

Download references

Acknowledgements

We wish to thank Justo Sanchez for his collaboration with the chemical analyses and Dr. Rosa Guaglianone for help in the recognition of the species. We also acknowledge Roque Boccalandro, Mario Sanchez, Ramón Molina, and other Park rangers for their field assistance, and Carlos Coviella for helping us with thoughtful comments on the manuscript. Financial support was provided by “The sustainable management of wetland resources in Mercosur” ERB IC18-CT98-0262 and Universidad Nacional del Luján.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Torremorell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torremorell, A., Gantes, P. Decomposition and nitrogen dynamics of Rhynchospora asperula in floating soils of Esteros del Iberá, Argentina. Wetlands Ecol Manage 18, 191–201 (2010). https://doi.org/10.1007/s11273-009-9159-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-009-9159-1

Keywords

Navigation