Skip to main content

Advertisement

Log in

Assessment of Daily Streamflow, Sediment Fluxes, and Erosion Rate of a Pro-glacial Stream Basin, Central Himalaya, Uttarakhand

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Reliable information of hydrological processes within a river basin is essentially required for developing an appropriate strategy for achieving sustainable development goals. The present study assesses the streamflow of a pro-glacial stream and also intends to estimate the contribution of suspended sediments, erosion rate, and the headwater contribution of the Panchachuli glacier. A field study during ablation period was carried out to measure streamflow and suspended sediment concentration (SSC). Further, HBV model was used to estimate the snowmelt. The average seasonal streamflow and SSC during the gauging period (July to October) for the basin were measured to be 7.17 m3/s, and 1.52 g/l in 2018, and 6.84 m3/s, and 1.21 g/l in 2019, respectively. Snowmelt contribution in total streamflow was 54.75% in 2018 which is reduced to 49.16% in 2019. Similarly, glacier melt contributes to 32.62% of its total runoff share in 2018 which was reduced to 28.73% in 2019. The rainfall runoff in total runoff increased to 12.62% from 2018 to 2019. Rainfall-runoff in its total runoff contribution showed an increased share of 22.13% in 2019. The streamflow, SSC, and suspended sediment load (SSL) showed a strong positive correlation for both the years. The suspended sediment yield (SSY), SSL, and erosion rate of the basin were found as high as compared to the other Himalayan basins in Himachal Pradesh, Jammu and Kashmir, and Ladakh and non-Himalayan regions that was found low when compared to other glaciers in Uttarakhand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the’Supplementary Material’ wherein further inquiries can be made from the corresponding author.

The opinions expressed herein are those of the authors and do not necessarily reflect the views of the study sponsors.

References

  • Bahuguna, I. M., Rathore, B. P., Brahmbhatt, R., Sharma, M., Dhar, S., Randhawa, S. S., & Ajai. (2014). Are the Himalayan glaciers retreating? Current Science, 106(7), 1008–1013.

    Google Scholar 

  • Bergstrom, S. (2002). The HBV model—Past, present and the future. In ¨XXII Nordic Hydrological Conference, 4–7 August 2002, Roros.

  • Bezinge, A. (1987). Glacial meltwater streams, hydrology and sediment transport: The case of the Grande Dixence hydroelectricity scheme. Glacio-Fluvial Sediment Transfer: An Alpine Perspective. John Wiley and Sons, New York. 1987, pp 473-498.

  • Bhadra, B. K., Arun, G., Salunkhe, S. S., & Jeyaseelan, A. T. (2015). Snowmelt runoff modeling and its implications in hydropower potential assessment in Dhauliganga Catchment of Pithoragarh District, Uttarakhand. Frontiers of Earth Science, 343–354.

  • Bhutiyani, M. R. (2000). Sediment load characteristics of a proglacial stream of Siachen Glacier and the erosion rate in Nubra valley in the Karakoram Himalayas India. Journal of Hydrology, 227(1–4), 84–92. https://doi.org/10.1016/S0022-1694(99)00174-2

    Article  Google Scholar 

  • Bisht, H., Sah, S. K., Kumar, K., & Arya, P. C. (2018). Quantification of variability in discharge and suspended sediment concentration of meltwater of Gangotri glacier, Garhwal Himalaya. ENVIS Centre on Himalayan Ecology, 15, 10–16.

    Google Scholar 

  • Bisht, H., Kotlia, B. S., Kumar, K., Arya, P. C., & Sah, S. K. (2020). Estimation of suspended sediment concentration and meltwater discharge draining from the Chaturangi glacier Garhwal Himalaya. Arabian Journal of Geosciences, 13, 248. https://doi.org/10.1007/s12517-020-5204-4

    Article  CAS  Google Scholar 

  • Collins, D. N. (1998). Suspended sediment flux in meltwaters draining from Batura glacier as an indicator of the rate of glacial erosion in the Karakoram Mountains. Quat Proc., 6, 1–10.

    Google Scholar 

  • Collins, D. N., & Hasnain, S. I. (1995). Runoff and sediment transport from glacierized basins at the Himalayan scale. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 226, 17–26. https://iahs.info/uploads/dms/9937.17-25-226-Collins.pdf

  • Dutta, S. (2016). Soil erosion, sediment yield and sedimentation of reservoir: A review. Modeling Earth Systems and Environment, 2(3), 1–18. https://doi.org/10.1007/s40808-016-0182-y

    Article  Google Scholar 

  • Gardner, J. S. (1986). Recent fluctuations of Rakhiot glacier Nanga Parbat, Punjab Himalaya, Pakistan. Journal of Glaciolology, 32, 527–529. https://doi.org/10.3189/S0022143000012247

    Article  Google Scholar 

  • Harbor, J., & Warburton, J. (1992). Glaciation and denudation rates. Nature, 356, 751. https://doi.org/10.1038/356751a0

    Article  Google Scholar 

  • Haritashya, U. K., Singh, P., Kumar, N., & Gupta, R. P. (2006). Suspended sediment from the Gangotri Glacier: Quantification, variability and associations with discharge and air temperature. Journal of Hydrology, 321(4), 116–130. https://doi.org/10.1016/j.jhydrol.2005.07.037

    Article  Google Scholar 

  • Hasnain, S. I., & Chauhan, D. S. (1993). Sediment transfer in the glaciofluvial environment—a Himalayan perspective. Environmental Geology, 22, 205–211. https://doi.org/10.1007/BF00767405

    Article  Google Scholar 

  • Hasnain, S. I., & Thayyen, R. J. (1999). Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani glacier, Garhwal Himalaya, India. Journal of Hydrology, 218, 191–198. https://doi.org/10.1080/02626660209492963

    Article  Google Scholar 

  • Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin, S., Orlove, B., Steltzer, H. (2019) High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (pp.  131-202).

  • Hodgkins, R., Tranter, M., & Dowdeswell, J. A. (1997). Solute provenance, transport and denudation in a high Arctic glacierized catchment. Hydrological Processes, 11, 1813–1832. https://doi.org/10.1002/(SICI)1099-1085(199711)11:14%3c1813::AID-HYP498%3e3.0.CO;2-C

    Article  Google Scholar 

  • Hubbard, B., & Glasser, N. F. (2005). Field techniques in glaciology and glacial geomorphology (pp. 65–80). John Wiley and Sons.

    Google Scholar 

  • IPCC. (2018). Global Warming of 1.5°C. Special Report Intergovernmental Panel on Climate Change.

  • IPCC. (2021). AR6 climate change 2021: impacts, adaptation and vulnerability — IPCC. In: IPCC. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/

  • Kostrzewski, A., Kaniecki, A., Kapuściński, J., Klimczak, R., Stach, A., & Zwoliński, Z. (1989). The dynamics and rate of denudation of glaciated and non-glaciated catchments, central Spitsbergen. Polish Polar Research, 10, 317–367.

    Google Scholar 

  • Kumar, K., Miral, M. S., Joshi, V., & Panda, Y. S. (2002). Discharge and suspended sediment in the meltwater of Gangotri Glacier, Garhwal Himalaya India. Hydrological Sciences Journal, 47(4), 611–619. https://doi.org/10.1080/02626660209492963

    Article  Google Scholar 

  • Kumar, R., Kumar, R., Singh, S., Singh, A., Bhardwaj, A., Kumari, A., Randhawa, S. S., & Saha, A. (2018). Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment, Western Himalaya. Acta Geophysica, 66, 1109–1120. https://doi.org/10.1007/s11600-018-0184-4

    Article  Google Scholar 

  • Kumar, A., Mishra, S., Taxak, A. K., Pandey, R., & Yu, Z. G. (2020). Nature rejuvenation: Long-term (1989–2016) vs short-term memory approach based appraisal of water quality of the upper part of Ganga River India. Environmental Technology & Innovation, 20, 101164. https://doi.org/10.1016/j.eti.2020.101164

    Article  CAS  Google Scholar 

  • Kumar, A., Taxak, A. K., Mishra, S., & Pandey, R. (2021a). Long-term trend analysis and suitability of water quality of River Ganga at Himalayan hills of Uttarakhand India. Environmental Technology & Innovation, 22, 101405. https://doi.org/10.1016/j.eti.2021.101405

  • Kumar, A., Pinto, M. C., Candeias, C., & Dinis, P. A. (2021b). Baseline maps of potentially toxic elements in the soils of Garhwal Himalayas, India: Assessment of their eco-environmental and human health risks. Land Degradation & Development, 32(14), 3856–3869. https://doi.org/10.1002/ldr.3984

    Article  Google Scholar 

  • Kuniyal, J. C., Kanwar, N., Bhoj, A. S., Rautela, K. S., Joshi, P., Kumar, K., Sofi, M. S., et al. (2021). Climate change impacts on glacier-fed and non-glacier-fed ecosystems of the Indian Himalayan Region: People’s perception and adaptive strategies. Current Science (00113891), 120(5), 888–899. https://doi.org/10.18520/cs/v120/i5/888-899

  • Menzies, J. (2009). Glacial geomorphology. In V. Gornitz (Ed.), Encyclopedia of paleoclimatology and ancient environments (pp. 361–374). Springer.

    Chapter  Google Scholar 

  • Obialor, C. A., Okeke, O. C., Onunkwo, A. A., Fagorite, V. I., & Ehujuo, N. N. (2019). Reservoir sedimentation: Causes, effects and mitigation. International Journal of Advanced Academic Research Sciences, Technology and Engineering, 5(10), 92–109.

    Google Scholar 

  • Ojha, C. S. P., Brendtsson, R. & Bhunya, P. (2008). Engineering hydrology. New Delhi, India: Oxford University Press, 440, pp. 51–53.

  • Ostrem, G. (1975). Sediment transport in a glacial meltwater stream. In: Glaciofluvial and Glaciolacstrine Sedimentation (ed. bv A. V. Jopling and B. C. McDonald), Society of Economic Paleontologists and Mineralogists, Special Publ. John Wiley and Sons Ltd., 23, 101–122. https://doi.org/10.2110/pec.75.23.0101

  • Othman, N. Y., Abd Saleh, Z., & Omran, Z. A. (2019). Development of stage-distance-discharge relationship and rating curve using least square method. Civil Engineering Journal, 5(9), 1959–1969. https://doi.org/10.28991/cej-2019-03091385 

  • Pandey, S. K., Singh, A. K., & Hasnain, S. I. (2002). Grain-size distribution, morphoscopy and elemental chemistry of suspended sediments of Pindari Glacier, Kumaon Himalaya India. Hydro Sci, 47(2), 213–226. https://doi.org/10.1080/02626660209492925

    Article  CAS  Google Scholar 

  • Puri, V. M. K. (1999). Glaciohydrological and suspended sediment load studies in the melt water channel of Changme Khangpu Glacier, Mangam district, Sikkim. In Symposium on Snow, Ice and Glaciers–Himalayan Prospective (Vol. 1, pp 1–5).Lucknow.

  • Raina, V. K., & Srivastava, D. (2008). Glacier atlas of India. GSI Publications, 7(1), 1-315. http://www.geosocindia.org/index.php/bgsi/article/view/56014

  • Ramanathan, A. L. (2011). Status report on Chhota Shigri Glacier (Himachal Pradesh). Sci. Eng. Res. Counc. Dep. Sci. Technol. Gov. India, pp. 88–89. http://lahaulspititravel.com/status-report-on-chota-shigri-glacier/

  • Rao, S. V. N., Rao, M. V., Ramasastri, K. S., & Singh, R. N. P. (1997). A study of sedimentation in Chenab basin in western Himalayas. Hydrology Research, 28(3), 201–216. https://doi.org/10.2166/nh.1997.0012

    Article  CAS  Google Scholar 

  • Rautela, K. S., Kuniyal, J. C., Kanwar, N., & Bhoj, A. S. (2020). Estimation of stream hydraulic parameters and sediment load in River Neola in the foothills of the Panchachuli Glacier During the Ablation Period. J Himalayan Ecol Sustain Dev, 15, 114–125.

  • Rautela, K. S., Kumar, M., Khajuria, V., & Alam, M. A. (2022). Comparative geomorphometric approach to understand the hydrological behaviour and identification of the Erosion prone areas of a coastal watershed using RS and GIS tools. Discover Water, 2(1), 1–16. https://doi.org/10.1007/s43832-021-00009-z

  • Rieger, H. C. (1981). Man versus mountain—the destruction of Himalayan ecosystem. In J. S. Lall (Ed.), Himalaya (pp. 351–376). Oxford University Press.

    Google Scholar 

  • Sabir, M. A., Shafiq-Ur-Rehman, S., Umar, M., Waseem, A., Farooq, M., & Khan, A. R. (2013). The impact of suspended sediment load on reservoir siltation and energy production: A case study of the Indus River and its tributaries. Polish Journal of Environmental Studies, 22(1), 219–225. http://www.pjoes.com/The-Impact-of-Suspended-Sediment-Load-r-non-Reservoir-Siltation-and-Energy-Production,88972,0,2.html

  • Sangewar, C. V., & Shukla, S. P. (2009). Inventory of the Himalayan Glaciers: a contribution to the International Hydrological Programme. An updated edition. Kolkata: Geological Survey of India (Special Publication 34), 254–436.

  • Schaner, N., Voisin, N., Nijssen, B., & Lettenmaier, D. P. (2012). The contribution of glacier melt to streamflow. Environmental Research Letters, 7(3). https://doi.org/10.1088/1748-9326/7/3/034029

  • Shroder, J. F., Jr. (2002). Sediment transport and yield at the Raikot Glacier, Nanga Parbat (pp. 134–141). Routledge.

    Google Scholar 

  • Singh, V. P., & Chen, V. J. (1982). On the relation between sediment yield and runoff volume (pp. 555–570). Water Resources Publications.

    Google Scholar 

  • Singh, P., Ramasastri, K. S., Kumar, N., & Bhatnagar, N. K. (2003). Suspended sediment transport from the Dokriani Glacier in the Garhwal Himalayas. Nordic Hydrology, 34, 221–244. https://doi.org/10.2166/nh.2003.0005

    Article  Google Scholar 

  • Singh, P., Haritashya, U. K., & Kumar, N. (2004). Seasonal changes in meltwater storage and drainage characteristics of the Dokriani Glacier, Garhwal Himalayas (India). Nordic Hydrology, 35(1), 15–29. https://doi.org/10.2166/nh.2004.0002

    Article  Google Scholar 

  • Singh, P., Haritashya, U. K., Kumar, N., & Singh, Y. (2006). Hydrological characteristics of the Gangotri glacier, central Himalayas India. Journal of Hydrology, 327(1–2), 55–67. https://doi.org/10.1016/j.jhydrol.2005.11.060

    Article  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Pottakkal, J. G., & Kumar, M. (2014). Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. Journal of Asian Earth Sciences, 79, 224–234. https://doi.org/10.1016/j.jseaes.2013.09.010

    Article  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Mandal, A., & Angchuk, T. (2015a). Transportation of suspended sediment from meltwater of the Patsio Glacier, Western Himalaya, India. Proceedings of the National Academy of Sciences, India Section a: Physical Sciences, 85(1), 169–175. https://doi.org/10.1007/s40010-015-0198-0

    Article  CAS  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Sharma, P., & Pottakkal, J. G. (2015b). Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri Glacier, western Himalaya India. Arabian Journal of Geosciences, 8(1), 281–293. https://doi.org/10.1007/s12517-013-1176-y

  • Singh, V. B., Ramanathan, A. L., & Pottakkal, J. G. (2016). Glacial runoff and transport of suspended sediment from the Chhota Shigri glacier, Western Himalaya India. Environmental Earth Sciences, 75(8), 695–713. https://doi.org/10.1007/s12665-016-5271-8

    Article  Google Scholar 

  • Sofi, M. S., Rautela, K. S., Bhat, S. U., Rashid, I., & Kuniyal, J. C. (2021). Application of geomorphometric approach for the estimation of hydro-sedimentological flows and cation weathering rate: Towards understanding the sustainable land use policy for the Sindh Basin, Kashmir Himalaya. Water, Air, & Soil Pollution, 232(7), 1–11. https://doi.org/10.1007/s11270-021-05217-w

    Article  CAS  Google Scholar 

  • Şorman, A. A., Şensoy, A., Tekeli, A. E., Şorman, A. Ü., & Akyürek, Z. (2009). Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey. Hydrological Processes: An International Journal, 23(7), 1031–1040. https://doi.org/10.1002/hyp.7204

    Article  Google Scholar 

  • Srivastava, D., Kumar, A., Verma, A., & Swaroop, S. (2014). Characterization of suspended sediment in meltwater from glaciers of Garhwal Himalaya. Hydrological Processes, 28, 969–979. https://doi.org/10.1002/hyp.9631

    Article  Google Scholar 

  • Teutschbein, C., Grabs, T., Laudon, H., Karlsen, R. H., & Bishop, K. (2018). Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. Journal of Hydrology, 561, 160–178. https://doi.org/10.1016/j.jhydrol.2018.03.060

    Article  Google Scholar 

  • Thayyen, R. J., Gergan, J. T., & Dobhal, D. P. (1999). Particle size characteristics of suspended sediments and subglacial hydrology of Dokriani Glacier, Garhwal Himalaya India. Hydrological Sciences Journal, 44(1), 47–61. https://doi.org/10.1080/02626669909492202

    Article  Google Scholar 

  • Tundu, C., Tumbare, M. J., & Onema, J. K. (2018). Sedimentation and its impacts/effects on river system and reservoir water quality: Case study of Mazowe Catchment Zimbabwe. Proc IAHS, 377, 57–66. https://doi.org/10.5194/piahs-377-57-2018

    Article  CAS  Google Scholar 

  • Varay, L. S., Rai, S. P., Singh, S. K., & Jain, V. (2017). Estimation of snow and glacial melt contribution through stable isotopes and assessment of its impact on river morphology through stream power approach in two Himalayan river basins. Environmental Earth Sciences, 76(23), 1–19. https://doi.org/10.1007/s12665-017-7142-3

    Article  CAS  Google Scholar 

  • Williams, G. P. (1989). Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology, 111, 89–106. https://doi.org/10.1016/0022-1694(89)90254-0

    Article  Google Scholar 

  • Wulf, H., Bookhagen, B., & Scherler, D. (2012). Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrol Earth Syst Sci Discuss, 9, 541–594. https://doi.org/10.5194/hess-16-2193-2012

    Article  Google Scholar 

  • Yamini, O. A., Mousavi, S. H., Kavianpour, M. R., & Movahedi, A. (2018). Numerical modeling of sediment scouring phenomenon around the offshore wind turbine pile in marine environment. Environmental Earth Sciences, 77(23), 1–15. https://doi.org/10.1007/s12665-018-7967-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors heartily and sincerely thank the Director of the Govind Ballabh Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora-263 643, Uttarakhand, for providing facilities. The research work conducted as a part of the research project titled, “Anthropogenic impacts and their management options in different ecosystems of the Indian Himalayan Region” funded by the National Mission on Himalayan Studies (NMHS), Ministry of Environment, Forest and Climate Change (MoEF&CC), Govt. of India, New Delhi, is thankfully acknowledged.

Funding

The National Mission on Himalayan Studies (NMHS), Government of India provided financial support for this study under grant number NMHS/SG-2017/260.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jagdish Chandra Kuniyal, Kuldeep Singh Rautela and M.A. Alam; methodology: Kuldeep Singh Rautela and Jagdish Chandra Kuniyal; formal analysis and investigation: Kuldeep Singh Rautela, Nidhi Kanwar, and Ajay Singh Bhoj; writing — original draft preparation: Kuldeep Singh Rautela; writing — review and editing: Jagdish Chandra Kuniyal, Kuldeep Singh Rautela and M.A. Alam; supervision: Jagdish Chandra Kuniyal, and M.A. Alam.

Corresponding author

Correspondence to Jagdish Chandra Kuniyal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rautela, K.S., Kuniyal, J.C., Alam, M.A. et al. Assessment of Daily Streamflow, Sediment Fluxes, and Erosion Rate of a Pro-glacial Stream Basin, Central Himalaya, Uttarakhand. Water Air Soil Pollut 233, 136 (2022). https://doi.org/10.1007/s11270-022-05567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05567-z

Keywords

Navigation