Skip to main content
Log in

Optimization of Process Variables to Prepare Mesoporous Activated Carbon from Mustard Straw for Dye Adsorption Using Response Surface Methodology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In present work, mustard straw, an abundantly available agricultural residue in various parts of globe, is used to prepare a low-cost activated carbon by chemical activation using phosphoric acid. Response surface methodology is employed for optimization of adsorption of methylene blue dye onto mustard straw-activated carbon (MSAC). Central composite design is employed to evaluate the effect of three production variables namely activation temperature (400–800 °C), activation time (60–120 min), and impregnation ratio (2–7), on adsorption capacities of activated carbon to maximize methylene blue dye removal from its aqueous solution. Among the three process variables, activation time showed prominent effect on the response whereas the effect of activation temperature was relatively less significant on adsorption capacity of MB. The optimum conditions obtained for MSAC are activation temperature, 768 °C; activation time, 60 min; and impregnation ratio, 4.2, which leads to 198 mg g−1 adsorption capacity of methylene blue. The model predicted and experimental value for response were highly comparable. Characterization of MSAC was done using several analytical techniques such as Fourier transform infrared spectroscopy and field emission scanning electron microscopy techniques, and reusability up to five adsorption-desorption cycles was tested. The results showed that MSAC obtained has highly porous structure comparable with activated carbon obtained from other biomass feed stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullah, A. L., Salleh, M. M., Mazlina, M. S., Noor, M. J. M. M., Osman, M. R., Wagiran, R., & Sobri, S. (2005). Azo dye removal by adsorption using waste biomass: sugarcane bagasse. International Journal of engineering and technology, 2(1), 8–13.

    Google Scholar 

  • Ahmad, A. A., Hameed, B. H., & Ahmad, A. L. (2009). Removal of disperse dye from aqueous solution using waste-derived activated carbon: optimization study. Journal of Hazardus Material, 170, 612–619.

    CAS  Google Scholar 

  • Arulkumar, M., Sathishkumar, P., & Palvannan, T. (2011). Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. Journal of Hazardous Materials, 186(1), 827–834.

    CAS  Google Scholar 

  • Auta, M., & Hameed, B. H. (2011). Optimized waste tea activated carbon for adsorption of methylene blue and acid blue 29 dyes using response surface methodology. Chemical Engineering Journal, 175, 233–243.

    CAS  Google Scholar 

  • Babel, S., & Kurniawan, T. A. (2004). Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54(7), 951–967.

    CAS  Google Scholar 

  • Bacaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Phan Tan Luu, R., Maldonado-Hodar, F. J., Rivera-Utrilla, J., & Moreno-Castilla, C. (2001). Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon, 39(3), 425–432.

    CAS  Google Scholar 

  • Beltrame, K. K., Cazetta, A. L., de Souza, P. S., Spessato, L., Silva, T. L., & Almeida, V. C. (2018). Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicology and Environmental Safety, 147, 64–71.

    CAS  Google Scholar 

  • Cao, J., & Ma, Y. (2020). Direct preparation of activated carbon fiber aerogel via pyrolysis of cotton under CO2 atmosphere and its adsorption of methylene blue. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(9), 1108–1117.

    CAS  Google Scholar 

  • Charola, S., Yadav, R., Das, P., & Maiti, S. (2018). Fixed-bed adsorption of reactive Orange 84 dye onto activated carbon prepared from empty cotton flower agro-waste. Sustainable Environment Research, 28(6), 298–308.

    CAS  Google Scholar 

  • Charola, S., Patel, H., Chandna, S., & Maiti, S. (2019). Optimization to prepare porous carbon from mustard husk using response surface methodology adopted with central composite design. Journal of Cleaner Production, 223, 969–979.

    CAS  Google Scholar 

  • Cronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275(1–3), 276–284.

    CAS  Google Scholar 

  • Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1–21.

    CAS  Google Scholar 

  • Danish, M., Hashim, R., Ibrahim, M. M., & Sulaiman, O. (2014). Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass and Bioenergy, 61, 167–178.

    CAS  Google Scholar 

  • Danish, M., Ahmad, T., Nadhari, W. N. A. W., Ahmad, M., Khanday, W. A., Ziyang, L., & Pin, Z. (2018). Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment. Applied Water Science, 8(1), 9.

    Google Scholar 

  • Demiral, H., & Gündüzoğlu, G. (2010). Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology, 101(6), 1675–1680.

    CAS  Google Scholar 

  • Dwivedi, C. P., Sahu, J. N., Mohanty, C. R., Mohan, B. R., & Meikap, B. C. (2008). Column performance of granular activated carbon packed bed for Pb (II) removal. Journal of Hazardous Materials, 156(1–3), 596–603.

    CAS  Google Scholar 

  • Fang, J., Gao, B., Mosa, A., & Zhan, L. (2017). Chemical activation of hickory and peanut hull hydrochars for removal of lead and methylene blue from aqueous solutions. Chemical Speciation & Bioavailability, 29(1), 197–204.

    CAS  Google Scholar 

  • Gao, Y., Yue, Q., Xu, S., & Gao, B. (2015). Activated carbons with well-developed mesoporosity prepared by activation with different alkali salts. Materials Letters, 146, 34–36.

    CAS  Google Scholar 

  • Gautam, R. K., Mudhoo, A., & Chattopadhyaya, M. C. (2013). Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of Alizarin Red S removal by mustard husk. Journal of Environmental Chemical Engineering, 1(4), 1283–1291.

    CAS  Google Scholar 

  • Grzybek, T. (1997). Carbon materials in cleaning of waste gases. Karbo- Energochemia-Ekologia, 42(3), 114–116.

    CAS  Google Scholar 

  • Hameed, B. H., Tan, I. A. W., & Ahmad, A. L. (2008). Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology. Journal of Hazardous Materials, 158(2–3), 324–332.

    CAS  Google Scholar 

  • Hesas, R. H., Arami-Niya, A., Daud, W. M. A. W., & Sahu, J. N. (2013). Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: optimisation using surface response methodology. Chemical Engineering Research and Design, 91(12), 2447–2456.

    Google Scholar 

  • Hippolyte, M. T., Augustin, M., Hervé, T. M., Robert, N., & Devappa, S. (2018). Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. Bioresources and Bioprocessing, 5(1), 48.

    Google Scholar 

  • Idris, S. S., Rahman, N. A., Ismail, K., Alias, A. B., Rashid, Z. A., & Aris, M. J. (2010). Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology, 101(12), 4584–4592.

    CAS  Google Scholar 

  • Karacan, F., Ozden, U., & Karacan, S. (2007). Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology. Applied Thermal Engineering, 27(7), 1212–1218.

    CAS  Google Scholar 

  • Kazeem, T. S., Lateef, S. A., Ganiyu, S. A., Qamaruddin, M., Tanimu, A., Sulaiman, K. O., Jillani, S. M. S., & Alhooshani, K. (2018). Aluminium-modified activated carbon as efficient adsorbent for cleaning of cationic dye in wastewater. Journal of Cleaner Production, 205, 303–312.

    CAS  Google Scholar 

  • Khodadoust, S., Ghaedi, M., Sahraei, R., & Daneshfar, A. (2014). Application of experimental design for removal of sunset yellow by copper sulfide nanoparticles loaded on activated carbon. Journal of Industrial and Engineering Chemistry, 20, 2663–2670.

    CAS  Google Scholar 

  • Lam, S. S., Liew, R. K., Wong, Y. M., Yek, P. N. Y., Ma, N. L., Lee, C. L., & Chase, H. A. (2017). Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. Journal of Cleaner Production, 162, 1376–1387.

    CAS  Google Scholar 

  • Liew, R. K., Chong, M. Y., Osazuwa, O. U., Nam, W. L., Phang, X. Y., Su, M. H., Cheng, C. K., Chong, C. T., & Lam, S. S. (2018). Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates, 44(6), 3849–3865.

    CAS  Google Scholar 

  • Ma, D., Hu, S., Li, Y., & Xu, Z. (2019). Adsorption of uranium on phosphoric acid-activated peanut shells. Separation Science and Technology, 1–13.

  • Mahmood, T., Ali, R., Naeem, A., Hamayun, M., & Aslam, M. (2017). Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process Safety and Environmental Protection, 109, 548–563.

    CAS  Google Scholar 

  • Martin-Gullon, I., Marco-Lozar, J. P., Cazorla-Amorós, D., & Linares-Solano, A. (2004). Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons. Carbon, 42(7), 1339–1343.

    CAS  Google Scholar 

  • Mohanty, K., Das, D., & Biswas, M. N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal, 115, 121–131.

    CAS  Google Scholar 

  • Montgomery, D. C. (2017). Design and analysis of experiments. John.

  • Moralı, U., Demiral, H., & Sensöz, S. (2018). Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, 189, 602–611.

    Google Scholar 

  • Patel, H., Rajai, V., Das, P., Charola, S., Mudgal, A., & Maiti, S. (2018). Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM. Renewable Energy, 122, 310–322.

    CAS  Google Scholar 

  • Pongpiachan, S. (2014). FTIR spectra of organic functional group compositions in PM2. 5 collected at Chiang-Mai City, Thailand during the haze episode in March 2012. Journal of Applied Science, 14(22), 2967–2977.

    CAS  Google Scholar 

  • Prahas, D., Kartika, Y., Indraswati, N., & Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chemical Engineering Journal, 140, 32–42.

    CAS  Google Scholar 

  • Purohit, P., Tripathi, A. K., & Kandpal, T. C. (2006). Energetics of coal substitution by briquettes of agricultural residues. Energy, 31(8–9), 1321–1331.

    CAS  Google Scholar 

  • Rajasulochana, P., & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resource-Efficient Technologies, 2, 175–184.

    Google Scholar 

  • Reddy, K. S. K., Al Shoaibi, A., & Srinivasakannan, C. (2012). A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Materials, 27(5), 344–351.

    CAS  Google Scholar 

  • Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M. B., Dubois, M., Batisse, N., & Duclaux, L. (2010). Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials, 175(1–3), 779–788.

    CAS  Google Scholar 

  • Ricordel, S., Taha, S., Cisse, I., & Dorange, G. (2001). Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Separation and Purification Technology, 24(3), 389–401.

    CAS  Google Scholar 

  • Sahu, J. N., Acharya, J., & Meikap, B. C. (2010). Optimization of production conditions for activated carbons from tamarind wood by zinc chloride using response surface methodology. Bioresource Technology, 101(6), 1974–1982.

    CAS  Google Scholar 

  • Salman, J. M. (2014). Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution. Arabian Journal of Chemistry, 7(1), 101–108.

    CAS  Google Scholar 

  • Senthilkumar, T., Chattopadhyay, S., & Miranda, L. R. (2017). Optimization of activated carbon preparation from pomegranate peel (Punica granatum peel) using RSM. Chemical Engineering Communications, 204(2), 238–248.

    CAS  Google Scholar 

  • Shamsuddin, M. S., Yusoff, N. R. N., & Sulaiman, M. A. (2016). Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation. Procedia Chemistry, 19, 558–565.

    CAS  Google Scholar 

  • Tao, H. C., Zhang, H. R., Li, J. B., & Ding, W. Y. (2015). Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresource Technology, 192, 611–617.

    CAS  Google Scholar 

  • Teo, E. Y. L., Muniandy, L., Ng, E. P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110–119.

    CAS  Google Scholar 

  • Theydan, S. K., & Ahmed, M. J. (2012). Optimization of preparation conditions for activated carbons from date stones using response surface methodology. Powder Technology, 224, 101–108.

    CAS  Google Scholar 

  • Vamvuka, D., Kakaras, E., Kastanaki, E., & Grammelis, P. (2003). Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel, 82(15–17), 1949–1960.

    CAS  Google Scholar 

  • Wallace, C. A., Afzal, M. T., & Saha, G. C. (2019). Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing, 6(1), 33.

    Google Scholar 

  • Yakout, S. M., & El-Deen, G. S. (2016). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9, 1155–1162.

    Google Scholar 

  • Yang, H., Chen, H., Zheng, C., Yan, R., Lee, D. H., & Liang, D. T. (2006). Mechanism of palm oil waste pyrolysis in a packed bed. Energy and Fuels, 20, 1321–1328.

    CAS  Google Scholar 

  • Zrybko, C. L., Fukuda, E. K., & Rosen, R. T. (1997). Determination of glucosinolates in domestic and wild mustard by high-performance liquid chromatography with confirmation by electrospray mass spectrometry and photodiode-array detection. Journal of Chromatography A, 767(1–2), 43–52.

    CAS  Google Scholar 

Download references

Funding

The authorities of Malaviya National Institute of Technology, Jaipur, Rajasthan, India, provided financial and infrastructural support for conducting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Vashishtha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patidar, K., Vashishtha, M. Optimization of Process Variables to Prepare Mesoporous Activated Carbon from Mustard Straw for Dye Adsorption Using Response Surface Methodology. Water Air Soil Pollut 231, 526 (2020). https://doi.org/10.1007/s11270-020-04893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04893-4

Keywords

Navigation