Skip to main content
Log in

Copper Oxide Nanoparticles as a Novel Adsorbent for Separation of Acrylic Acid from Aqueous Solution: Synthesis, Characterization, and Application

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Recently, nanoparticles as adsorbents have received great attention due to their notable properties. In this regard, the acrylic acid adsorption from aqueous medium was examined by utilizing copper oxide (CuO) nanoparticles. In this research, initially, CuO nanoparticles were synthesized using a simple precipitation technique. CuO nanoparticles were characterized by Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) analyzes. CuO nanoparticles synthesized were in nano scale size ranged between 140 and 180 nm. FTIR analysis also confirmed the functional groups of CuO nanoparticles. Lastly, the effects of contact time (30–240 min), concentration of acrylic acid (2–10% w/w), temperature (25–55 °C), and CuO nanoparticle dosage (0.05–0.25 g) on the adsorption of acrylic acid with CuO nanoparticles were examined. The optimum adsorption conditions were obtained as the contact time of 180 min, the concentration of acrylic acid of 10% (w/w), nanoparticle dosage of 0.05 g, and temperature of 25 °C. At these conditions, the maximum adsorption capacity of CuO nanoparticles for acrylic acid was found as 202.67 mg g−1. This result confirmed that the synthesized CuO nanoparticles exhibited good adsorption performance towards to acrylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahamed, M.J., Senkal, D., Shkel, A.M., (2014). Effect of annealing on mechanical quality factor of fused quartz hemispherical resonator, 2014 International Symposium on Inertial Sensors and Systems (ISISS). IEEE, 1-4.

  • Aroguz, A. Z., Gülen, J., & Evers, R. (2008). Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresource Technology, 99(6), 1503–1508.

    Article  CAS  Google Scholar 

  • Aşçı, Y. S., & İncİ, İ. (2010). Extraction equilibria of acrylic acid from aqueous solutions by amberlite LA-2 in various diluents. Journal of Chemical & Engineering Data, 55(7), 2385–2389.

    Article  Google Scholar 

  • Baylan, N., & Meriçboyu, A. E. (2016). Adsorption of lead and copper on bentonite and grapeseed activated carbon in single-and binary-ion systems. Separation Science and Technology, 51(14), 2360–2368.

    Article  CAS  Google Scholar 

  • Bhatia, D., Datta, D., Joshi, A., Gupta, S., & Gote, Y. (2019). Adsorption of isonicotinic acid from aqueous solution using multi-walled carbon nanotubes/Fe3O4. Journal of Molecular Liquids, 276, 163–169.

    Article  CAS  Google Scholar 

  • Bournel, F., Laffon, C., Parent, P., & Tourillon, G. (1996). Adsorption of acrylic acid on aluminium at 300 K: A multi-spectroscopic study. Surface Science, 352, 228–231.

    Article  Google Scholar 

  • Chiban, M., Soudani, A., Sinan, F., & Persin, M. (2011). Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids and Surfaces B: Biointerfaces, 82(2), 267–276.

    Article  CAS  Google Scholar 

  • Danner, H., Ürmös, M., Gartner, M., & Braun, R. (1998). Biotechnological production of acrylic acid from biomass. Applied Biochemistry and Biotechnology, 70(1), 887–894.

    Article  Google Scholar 

  • De, B., Wasewar, K., Dhongde, V., Madan, S., & Gomase, A. (2018). Recovery of acrylic acid using calcium peroxide nanoparticles: Synthesis, characterisation, batch study, equilibrium, and kinetics. Chemical and Biochemical Engineering Quarterly, 32(1), 29–39.

    Article  CAS  Google Scholar 

  • Farghali, A., Bahgat, M., Allah, A. E., & Khedr, M. (2013). Adsorption of Pb (II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef University Journal of Basic and Applied Sciences, 2(2), 61–71.

    Article  Google Scholar 

  • Ghaedi, M., Ghaedi, A., Hossainpour, M., Ansari, A., Habibi, M., & Asghari, A. (2014). Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study. Journal of Industrial and Engineering Chemistry, 20(4), 1641–1649.

    Article  CAS  Google Scholar 

  • Ghareib, M., Abdallah, W., Tahon, M., & Tallima, A. (2019). Biosynthesis of copper oxide nanoparticles using the preformed biomass of aspergillus fumigatus and their antibacterial and photocatalytic activities. Digest Journal of Nanomaterials & Biostructures (Djnb), 14(2), 291–303.

    Google Scholar 

  • Gomes, T., Pereira, C. G., Cardoso, C., Pinheiro, J. P., Cancio, I., & Bebianno, M. J. (2012). Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquatic Toxicology, 118, 72–79.

    Article  Google Scholar 

  • Goswami, A., Raul, P., & Purkait, M. (2012). Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design, 90(9), 1387–1396.

    Article  CAS  Google Scholar 

  • Gülen, J., & Zorbay, F. (2017). Methylene blue adsorption on a low cost adsorbent-carbonized peanut shell. Water Environment Research, 89(9), 805–816.

    Article  Google Scholar 

  • Gülen, J., Aroguz, A., & Dalgın, D. (2005). Adsorption kinetics of azinphosmethyl from aqueous solution onto pyrolyzed Horseshoe sea crab shell from the Atlantic Ocean. Bioresource Technology, 96(10), 1169–1174.

    Article  Google Scholar 

  • Gülen, J., Altın, Z., & Özgür, M. (2013). Adsorption of amitraz on the clay. American Journal of Engineering Research, 2(6), 1–8.

    Google Scholar 

  • Hassan, K. H., Jarullah, A. A., & Saadi, S. K. (2017). Synthesis of copper oxide nanoparticle as an adsorbent for removal of Cd (II) and Ni (II) ions from binary system. International Journal of Applied Environmental Sciences, 12(11), 1841–1861.

    Google Scholar 

  • Hosseini, R., Sayadi, M. H., & Shekari, H. (2019). Adsorption of nickel and chromium from aqueous solutions using copper oxide nanoparticles: Adsorption isotherms, kinetic modeling, and thermodynamic studies. Avicenna Journal of Environmental Health Engineering, 6(2), 1–9.

    Article  Google Scholar 

  • Ijagbemi, C. O., Baek, M. H., & Kim, D. S. (2009). Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 166(1), 538–546.

    Article  CAS  Google Scholar 

  • Keshav, A., Chand, S., & Wasewar, K. L. (2009). Reactive extraction of acrylic acid using tri-n-butyl phosphate in different diluents. Journal of Chemical & Engineering Data, 54(6), 1782–1786.

    Article  CAS  Google Scholar 

  • Lunelli, B.H., Duarte, E.R., De Toledo, E.V., Maciel, M.W., Maciel Filho, R., (2007). A new process for acrylic acid synthesis by fermentative process. Applied Biochemistry and Biotecnology. Springer, 487-499.

  • Mahmoodi, N. M., Hayati, B., Arami, M., & Lan, C. (2011). Adsorption of textile dyes on pine cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 268(1–3), 117–125.

    Article  CAS  Google Scholar 

  • Mao, Y., & Fung, B. (1997). A study of the adsorption of acrylic acid and maleic acid from aqueous solutions onto alumina. Journal of Colloid and Interface Science, 191(1), 216–221.

    Article  CAS  Google Scholar 

  • Mironyuk, I., Tatarchuk, T., Naushad, M., Vasylyeva, H., & Mykytyn, I. (2019). Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2. Journal of Molecular Liquids, 285, 742–753.

    Article  CAS  Google Scholar 

  • Musante, C., & White, J. C. (2012). Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environmental Toxicology, 27, 510–517.

    Article  CAS  Google Scholar 

  • Naushad, M. (2014). Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chemical Engineering Journal, 235, 100–108.

    Article  CAS  Google Scholar 

  • Naushad, M., Alqadami, A. A., AlOthman, Z. A., Alsohaimi, I. H., Algamdi, M. S., & Aldawsari, A. M. (2019). Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. Journal of Molecular Liquids, 293, 111442.

    Article  CAS  Google Scholar 

  • Nayak, A. K., & Pal, A. (2019). Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function. Journal of Molecular Liquids, 276, 67–77.

    Article  CAS  Google Scholar 

  • Nekouei, F., Nekouei, S., Tyagi, I., & Gupta, V. K. (2015). Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. Journal of Molecular Liquids, 201, 124–133.

    Article  CAS  Google Scholar 

  • Ojedokun, A. T., & Bello, O. S. (2017). Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Applied Water Science, 7(4), 1965–1977.

    Article  CAS  Google Scholar 

  • Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii, N., Fedorenko, G., Dvadnenko, K., & Ghazaryan, K. (2018a). Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 645, 1103–1113.

    Article  CAS  Google Scholar 

  • Rajput, V.D., Minkina, T., Fedorenko, A., Tsitsuashvili, V., Mandzhieva, S., Sushkova, S., Azarov, A., (2018b). Metal oxide nanoparticles: Applications and effects on soil ecosystems. Soil contamination: Sources, assessment and remediation. Nova Science Publishers, Hauppauge, 81–106.

  • Rashad, M., & Al-Aoh, H. A. (2019). Promising adsorption studies of bromophenol blue using copper oxide nanoparticles. Desalination and Water Treatment, 139, 360–368.

    Article  CAS  Google Scholar 

  • Sebeia, N., Jabli, M., Ghith, A., & Saleh, T. A. (2020). Eco-friendly synthesis of Cynomorium coccineum extract for controlled production of copper nanoparticles for sorption of methylene blue dye. Arabian Journal of Chemistry, 13(2), 4263–4274.

    Article  CAS  Google Scholar 

  • Singh, S., Kumar, N., Kumar, M., Agarwal, A., & Mizaikoff, B. (2017). Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical Engineering Journal, 313, 283–292.

    Article  CAS  Google Scholar 

  • Sivaraj, R., Rahman, P. K., Rajiv, P., Salam, H. A., & Venckatesh, R. (2014). Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 178–181.

    Article  CAS  Google Scholar 

  • Straathof, A. J., Sie, S., Franco, T. T., & Van der Wielen, L. A. (2005). Feasibility of acrylic acid production by fermentation. Applied Microbiology and Biotechnology, 67(6), 727–734.

    Article  CAS  Google Scholar 

  • Suárez-Cerda, J., Espinoza-Gómez, H., Alonso-Núñez, G., Rivero, I. A., Gochi-Ponce, Y., & Flores-López, L. Z. (2017). A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. Journal of Saudi Chemical Society, 21(3), 341–348.

    Article  Google Scholar 

  • Xiaobo, X., Jianping, L., & Peilin, C. (2006). Advances in the research and development of acrylic acid production from biomass. Chinese Journal of Chemical Engineering, 14(4), 419–427.

    Article  Google Scholar 

  • Zhang, H., Gong, Y., Li, C., Zhang, L., & Zhu, C. (2011). Liquid−liquid equilibria for the quaternary system water (1)+ acrylic acid (2)+ acetic acid (3)+ cyclohexane (4) at (293.15, 303.15, and 313.15) K. Journal of Chemical & Engineering Data, 56(5), 2332–2336.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Baylan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baylan, N., İlalan, İ. & İnci, İ. Copper Oxide Nanoparticles as a Novel Adsorbent for Separation of Acrylic Acid from Aqueous Solution: Synthesis, Characterization, and Application. Water Air Soil Pollut 231, 465 (2020). https://doi.org/10.1007/s11270-020-04832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04832-3

Keywords

Navigation