Skip to main content

Advertisement

Log in

Effects of Rhizobioaugmentation with N-Fixing Actinobacteria Frankia on Metal Mobility in Casuarina glauca-Soil System Irrigated with Industrial Wastewater: High Level of Metal Exclusion of C. glauca

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Agroforestry practices coupled with wastewater irrigation systems are sustainable strategies for water management. The performance of these practices could be improved by rhizobioaugmentation. This approach would be particularly useful in developing countries where it can be used as a low-cost tool to control widespread environmental contaminations. The main objectives of the present study are to (1) determine the effects of wastewater on metal/nutrient contents in soils, (2) assess the pattern of metals in Casuarina glauca, and (3) analyze the effects of rhizobioaugmentation of C. glauca growing in industrial wastewater–irrigated agricultural soil using N-fixing Frankia symbionts. Overall, the wastewater treatment significantly increases the levels of total Pb, B, Cr, Mn, Na, Sr, Zn, As, Co, Sb, Sn, and Fe. Only a small portion of total metals/nutrients were phytoavailable. The bioaccumulation in roots of all the metals/nutrients measured was high while the translocation from roots to aerial parts showed insignificant level of movement of the elements tested. Based on bioavailable metals/nutrients, the bioaccumulation factors were 34, 41, 94, 196, 584, 587, 1859, and 9917 for Mg, As, Ni, Mn, Cu, Co, Cr, and Pb, respectively. Hence, C. glauca is classified as a metal excluder. Rhizobioaugmentation with Frankia resulted in an increase or a decrease of metals/nutrients in soil depending on the bacterial strain used and the metal/nutrient element. It also increased significantly the bioaccumulation in roots of some metals and the uptake of key nutrients such as Ca, Na, and K by Casuarina plants. Overall, the results of the present study showed that C. glauca is suitable for phytoremediation of metal-contaminated soils. The use of Frankia represents a potential approach of managing Casuarina glauca wastewater–irrigated soil system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Shanab, R. A. I., Angle, J. S., & Chaney, R. L. (2006). Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry, 38(9), 2882–2889.

    CAS  Google Scholar 

  • Ali, I., Hadi, F., & Bano, A. (2012). Microbial assisted phytoextraction of metals and growth of soybean (Glycine Max L. Merrill) on industrial wastewater contaminated soil. Pakistan Journal of Botany, 44(5), 1593–1599.

    CAS  Google Scholar 

  • Alves, L. R., dos Reis, A. R., & Gratão, P. L. (2016). Heavy metals in agricultural soils: From plants to our daily life. Científica, 44(3), 346–361.

    Google Scholar 

  • Anh, T., Nkongolo, K. K., Mehes-Smith, M., Narendrula, R., Spiers, G., & Beckett, P. (2014). Heavy metal analysis in red oak (Quercus rubra) populations from a mining region in northern Ontario (Canada): Effect of soil liming and analysis of genetic variation. American Journal of Environmental Sciences, 10(4), 363–373.

    Google Scholar 

  • Arifin, A., Najihah, A., Hazandy, A. H., Majid, N. M., Shamshuddin, J., Karam, D. S., & Khairulmazmi, A. (2011). Using Orthosiphon stamineus B. for phytoremediation of heavy metals in soils amended with sewage sludge. American Journal of Applied Sciences, 8(4), 323–331.

    Google Scholar 

  • Bambara, S., & Ndakidemi, P. A. (2010). Changes in selected soil chemical properties in the rhizosphere of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Scientific Research and Essays, 5(7), 679–684.

    Google Scholar 

  • Bargali, K. (2011). Actinorhizal plants of Kumaun Himalaya and their ecological significance. African Journal of Plant Science, 5(7), 401–406.

    Google Scholar 

  • Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811–817.

    CAS  Google Scholar 

  • Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280–286.

    Google Scholar 

  • Chen, Z. J., Sheng, X. F., He, L. Y., Huang, Z., & Zhang, W. H. (2013). Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. Journal of Hazardous Materials, 244, 709–717.

    Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.

    CAS  Google Scholar 

  • Coyne, M. S., Mikkelsen, R., & Mineralization, S. (2015). Soil microorganisms contribute to plant nutrition and root health. Better Crops, 99(1), 18–20.

    Google Scholar 

  • Diagne, N., Diouf, D., Svistoonoff, S., Kane, A., Noba, K., Franche, C., et al. (2013). Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. Journal of Environmental Management, 128, 204–209.

    CAS  Google Scholar 

  • Dong, J., Mao, W. H., Zhang, G. P., Wu, F. B., & Cai, Y. (2007). Root excretion and plant tolerance to cadmium toxicity-a review. Plant Soil and Environment, 53(5), 193.

    CAS  Google Scholar 

  • El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation. Current Opinion in Microbiology, 8(3), 268–275.

    Google Scholar 

  • El Moussaoui, T., Wahbi, S., Mandi, L., Masi, S., & Ouazzani, N. (2017). Reuse study of sustainable wastewater in agroforestry domain of Marrakesh city. Journal of the Saudi Society of Agricultural Sciences.

  • Ernst, W. H. (2006). Evolution of metal tolerance in higher plants. Forest Snow and Landscape Research, 80(3), 251–274.

    Google Scholar 

  • Fulekar, M. H., & Bhawana, P. (2015). Rhizosphere: an innovative approach for remediation of contaminants. International Journal of Scientific & Engineering Research, 6(2) ISSN 2229-5518.

  • Furnholm, T. R., & Tisa, L. S. (2014). The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics, 15(1), 1092.

    Google Scholar 

  • Gadd, G. M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist, 18(2), 60–70.

    Google Scholar 

  • Galfati, I., Bilal, E., Sassi, A. B., Abdallah, H., & Zaïer, A. (2011). Accumulation of heavy metals in native plants growing near the phosphate treatment industry, Tunisia. Carpathian Journal of Earth and Environmental Sciences, 6(2), 85–100.

    Google Scholar 

  • Ghazouani, S., Béjaoui, Z., Michael, P., Spiers, G., Beckett, P., Gtari, M., & Nkongolo, K. K. (2020). Rhizobioaugmentation of Casuarina glauca with N-fixing actinobacteria Frankia decreases enzymatic activities in wastewater irrigated soil: Effects of Frankia on C. glauca growth. Ecotoxicology, 29(4), 417–428.

    CAS  Google Scholar 

  • Ghodhbane-Gtari, F., Hurst, S. G., Oshone, R., Morris, K., Abebe-Akele, F., Thomas, W. K., et al. (2014). Draft genome sequence of Frankia sp. strain BMG5. 23, a salt-tolerant nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina glauca grown in Tunisia. Genome Announcements, 2(3), e00520–e00514.

    Google Scholar 

  • Girdhar, M., Sharma, N. R., Rehman, H., Kumar, A., & Mohan, A. (2014). Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds. 3. Biotech, 4(6), 579–589.

    Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3), 367–374.

    CAS  Google Scholar 

  • Gtari, M., Daffonchio, D., & Boudabous, A. (2007). Occurrence and diversity of Frankia in Tunisian soil. Physiologia Plantarum, 130(3), 372–379.

    CAS  Google Scholar 

  • Hassan, T. U., Bano, A., & Naz, I. (2017). Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation, 19(6), 522–529.

    Google Scholar 

  • Jan, S., & Parray, J. A. (2016). Approaches to heavy metal tolerance in plants (pp. 1–18). Singapore: Springer.

    Google Scholar 

  • Jeong, S., Moon, H. S., Nam, K., Kim, J. Y., & Kim, T. S. (2012). Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil. Chemosphere, 88(2), 204–210.

    CAS  Google Scholar 

  • Kalubi, K. N., Mehes-Smith, M., & Omri, A. (2016). Comparative analysis of metal translocation in red maple (Acer rubrum) and trembling aspen (Populus tremuloides) populations from stressed ecosystems contaminated with metals. Chemistry and Ecology, 32, 312–323.

    CAS  Google Scholar 

  • Karthikeyan, A., Deeparaj, B., & Nepolean, P. (2009). Reforestation in bauxite mine spoils with Casuarina equisetifolia frost. and beneficial microbes. Forests, Trees and Livelihoods, 19(2), 153–165.

    Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6–15.

    CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    CAS  Google Scholar 

  • Lebeau, T. (2011). Bioaugmentation for in situ soil remediation: how to ensure the success of such a process. In bioaugmentation, biostimulation and biocontrol (pp. 129–186). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Lebeau, T., Braud, A., & Jézéquel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environmental Pollution, 153(3), 497–522.

    CAS  Google Scholar 

  • Lefrançois, E., Quoreshi, A., Khasa, D., Fung, M., Whyte, L. G., Roy, S., & Greer, C. W. (2007). Alder-Frankia symbionts enhance the remediation and revegetation of oil sands tailings.

  • Ma, Y., Zhang, C., Oliveira, R. S., Freitas, H., & Luo, Y. (2016a). Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola. Frontiers in Plant Science, 7, 75.

    Google Scholar 

  • Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016b). Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials, 320, 36–44.

    CAS  Google Scholar 

  • Madejón, P., Marañón, T., & Murillo, J. M. (2006). Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Science of the Total Environment, 355(1–3), 187–203.

    Google Scholar 

  • Majid, N. M., Islam, M. M., Abdul Rauf, R., Ahmadpour, P., & Abdu, A. (2012). Assessment of heavy metal uptake and translocation in Dyera costulata for phytoremediation of cadmium contaminated soil. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(3), 245–250.

    CAS  Google Scholar 

  • McCully, M. E. (2001). Niches for bacterial endophytes in crop plants: a plant biologist’s view. Functional Plant Biology, 28(9), 983–990.

    Google Scholar 

  • Mehes-Smith, M., & Nkongolo, K. K. (2015). Physiological and cytological responses of Deschampsia cespitosa and Populus tremuloides to soil metal contamination. Water, Air, and Soil Pollution, 226, 1–12.

    CAS  Google Scholar 

  • Mehes-Smith, M., Nkongolo, K. K., Narendrula, R., & Cholewa, E. (2013). Mobility of heavy metals in plants and soil: a case study from a mining region in Canada. American Journal of Environmental Sciences, 9(6), 483–493.

    CAS  Google Scholar 

  • Mganga, N., Manoko, M. L. K., & Rulangaranga, Z. K. (2011). Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. Tanzania Journal of Science, 37(1).

  • Murry, M. A., Fontaine, M. S., & Torrey, J. G. (1984). Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. Plant and Soil, 78(1–2), 61–78.

    CAS  Google Scholar 

  • Ngom, M., Oshone, R., Diagne, N., Cissoko, M., Svistoonoff, S., Tisa, L. S., et al. (2016). Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation. Symbiosis, 70(1–3), 17–29.

    CAS  Google Scholar 

  • Nkongolo, K. K., Spiers, G., Beckett, P., Narendrula, R., Theriault, G., Tran, A., & Kalubi, K. N. (2013). Long term effects of liming on soil chemistry and toxicity in stable and eroded upland areas of a mining region. Water, Air, and Soil Pollution, 224, 1618–1632.

    Google Scholar 

  • Nkongolo, K. K., Narendrula-Kotha, R., Kalubi, K. N., Rainville, R., & Michael, P. (2017). High level of nickel tolerance and metal exclusion identified in silver maple (Acer saccharinum). Chemistry and Ecology, 33(9), 795–806. https://doi.org/10.1080/02757540.2017.1376664.

  • Nouioui, I., Ghodhbane-Gtari, F., Rohde, M., Klenk, H. P., & Gtari, M. (2017). Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1266–1270.

    CAS  Google Scholar 

  • Prapagdee, B., Chanprasert, M., & Mongkolsuk, S. (2013). Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere, 92(6), 659–666.

    CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4), 529–540.

    CAS  Google Scholar 

  • Rajoo, K. S., Abdu, A., Singh, D. K., Abdul-Hamid, H., Jusop, S., & Zhen, W. W. (2013). Heavy metal uptake and translocation by Dipterocarpus verrucosus from sewage sludge contaminated soil. American Journal of Environmental Science, 9(3), 259–268.

    Google Scholar 

  • Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41.

    CAS  Google Scholar 

  • Rehan, M., Furnholm, T., Finethy, R. H., Chu, F., El-Fadly, G., & Tisa, L. S. (2014). Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport. Applied Microbiology and Biotechnology, 98(18), 8005–8015.

    CAS  Google Scholar 

  • Richards, J. W., Krumholz, G. D., Chval, M. S., & Tisa, L. S. (2002). Heavy metal resistance patterns of Frankia strains. Applied and Environmental Microbiology, 68(2), 923–927.

    CAS  Google Scholar 

  • Saadani, O., Fatnassi, I. C., Chiboub, M., Abdelkrim, S., Barhoumi, F., Jebara, M., & Jebara, S. H. (2016). In situ phytostabilisation capacity of three legumes and their associated plant growth promoting bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicology and Environmental Safety, 130, 263–269.

    CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology, 13(5), 468.

    CAS  Google Scholar 

  • Sheng, X., Sun, L., Huang, Z., He, L., Zhang, W., & Chen, Z. (2012). Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Journal of Environmental Management, 103, 58–64.

    CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology and Biotechnology, 32(11–12), 587–605.

    CAS  Google Scholar 

  • Sinha, R. K., Herat, S., & Tandon, P. K. (2007). Phytoremediation: role of plants in contaminated site management. Environmental Bioremediation Technologies Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 315–330.

    Google Scholar 

  • Spiers, G. A., Dudas, M. J., & Hodgins, L. W. (1983). Instrumental conditions and procedure for multielement analysis of soils and plant tissue by ICP-AES. Communications in Soil Science and Plant Analysis, 14(7), 629–644.

    CAS  Google Scholar 

  • Tak, H. I., Ahmad, F., & Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of Environmental Contamination and Toxicology (Vol. 223, pp. 33–52). New York, NY: Springer.

    Google Scholar 

  • Tani, C., & Sasakawa, H. (2003). Salt tolerance of Casuarina equisetifolia and Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia. Soil Science and Plant Nutrition, 49(2), 215–222.

    Google Scholar 

  • Theriault, G., Nkongolo, K. K., Narendrula, R., & Beckett, P. (2013). Molecular and ecological characterisation of plant populations from limed and metal-contaminated sites in northern Ontario (Canada): ISSR analysis of white birch (Betula papyrifera) populations. Chemistry and Ecology, 29(7), 573–585.

    CAS  Google Scholar 

  • Touceda-González, M., Brader, G., Antonielli, L., Ravindran, V. B., Waldner, G., Friesl-Hanl, W., et al. (2015). Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake. Soil Biology and Biochemistry, 91, 140–150.

    Google Scholar 

  • Traina, S. J., & Laperche, V. (1999). Contaminant bioavailability in soils, sediments, and aquatic environments. Proceedings of the National Academy of Sciences, 96(7), 3365–3371.

    CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Google Scholar 

  • Visioli, G., Vamerali, T., Mattarozzi, M., Dramis, L., & Sanangelantoni, A. M. (2015). Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Frontiers in Plant Science, 6, 638.

    Google Scholar 

  • Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere, 70(1), 36–45.

    CAS  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione andphytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167–179.

    CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.

    CAS  Google Scholar 

  • Zacchini, M., Pietrini, F., Mugnozza, G. S., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197(1–4), 23–34.

    CAS  Google Scholar 

  • Zhong, C., Zhang, Y., Chen, Y., Jiang, Q., Chen, Z., Liang, J., et al. (2010). Casuarina research and applications in China. Symbiosis, 50(1–2), 107–114.

    Google Scholar 

  • Zhong, C., Mansour, S., Nambiar-Veetil, M., Bogusz, D., & Franche, C. (2013). Casuarina glauca: a model tree for basic research in actinorhizal symbiosis. Journal of Biosciences, 38(4), 815–823.

    Google Scholar 

Download references

Funding

This study was supported by the National Research Institute of Rural Engineering, Water and Forests (INRGREF, Tunis, Tunisia), Ministry of Higher Education and Scientific Research (Tunis, Tunisia), Ministry of Agriculture, Water Resources and Fisheries (Tunis, Tunisia), and Laurentian University (Ontario, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabwe Nkongolo.

Ethics declarations

This article does not contain any studies with human subjects or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazouani, S., Béjaoui, Z., Spiers, G. et al. Effects of Rhizobioaugmentation with N-Fixing Actinobacteria Frankia on Metal Mobility in Casuarina glauca-Soil System Irrigated with Industrial Wastewater: High Level of Metal Exclusion of C. glauca. Water Air Soil Pollut 231, 395 (2020). https://doi.org/10.1007/s11270-020-04783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04783-9

Keywords

Navigation