Skip to main content
Log in

Effect of the Incorporation of Ni in the Adsorption Capacity of Paracetamol (N-Acetyl-P-Aminophenol) on MIL-101(Cr)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effect of nickel in the adsorption of N-acetyl-p-aminophenol (paracetamol) on a metal-organic frameworks (MOFs) type MIL-101(Cr) was studied. The incorporation of Ni to MOFs adsorbent was carried out by impregnation and adjusted to give a 4.00 wt.% Ni. The adsorbents were characterized by specific surface area (SSA), surface acidity techniques, electrophoretic migration (EM), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) and were tested by the adsorption of paracetamol solutions. The results showed that the Ni particles were well dispersed throughout the MIL-101(Cr) crystal increasing the acid strength and the density of acid site values in the MOFs surface. The increase in adsorption capacity of MIL-101(Cr) when Ni was incorporated can be attributed to the availability of metal atoms as adsorption centers that can adsorb the paracetamol by electronic retro-donation through π-type complexing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed, I., & Hwa, S. (2017). Applications of metal-organic frameworks in adsorption/separation processes via hydrogen bonding interactions. Chemical Engineering Journal, 310, 197–215.

    Article  CAS  Google Scholar 

  • Ahmed, M., & Theydan, S. (2012). Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations. Chemical Engineering Journal, 211, 200–207.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Caprioa, V., Marotta, R., & Vognab, D. (2003). Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Research, 37, 993–1004.

    Article  CAS  Google Scholar 

  • Aparicio, F., Camú, E., Villarroel, M., Escalona, N., & Baeza, P. (2013). Deep desulfurization by adsorption of 4,6-dimethyldibenzothiophene, study of adsorption on different transition metal oxides and supports. Journal of the Chilean Chemical Society, 58, 2057–2060.

    Article  CAS  Google Scholar 

  • Arikan, O. (2008). Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. Journal of Hazardous Materials, 158, 485–490.

    Article  CAS  Google Scholar 

  • Aslam, S., Subhan, F., Yan, Z., Etim, U. J., & Zeng, J. (2017). Dispersion of nickel nanoparticles in the cages of metal-organic framework: An efficient sorbent for adsorptive removal of thiophene. Chemical Engineering Journal, 315, 469–480.

    Article  CAS  Google Scholar 

  • Baeza, P., Aguila, G., Gracia, F., & Araya, P. (2008). Desulfurization by adsorption with copper supported on zirconia. Catalysis Communications, 9, 751–755.

    Article  CAS  Google Scholar 

  • Baeza, P., Aguila, G., Vargas, G., Ojeda, J., & Araya, P. (2012). Adsorption of thiophene and dibenzothiophene on highly dispersed Cu/ZrO2 adsorbents. Applied Catalysis B: Environmental, 111, 133–140.

    Article  CAS  Google Scholar 

  • Baeza, P., Aballay, P., Matus, C., Camú, E., Fernanda Ramirez, M., Eyzaguirre, J., & Ojeda, J. (2019). Degradation of paracetamol adsorbed on inorganic supports under UV irradiation. Water, Air, & Soil Pollution, 230, 34.

    Article  CAS  Google Scholar 

  • Benhmid, A., Edbey, K., Bukhzam, A., Alhowari, H., Mekhemer, G. A. H., & Zaki, M. I. (2018). Surface acidity of the supported molybdenum oxide catalysts probed by potentiometric titration of n-butylamine. International Research Journal of Pure & Applied Chemistry, 16, 1–7.

    Article  Google Scholar 

  • Cao, Y., Lu, S., Cui, W., Xu, Y., Cao, Z., & Zeng, Y. (2019). Adsorption desulfurization via π-complexation with Ag+-exchanged anionic metal–organic framework. Industrial & Engineering Chemistry Research, 58(16), 6704–6711.

    Article  CAS  Google Scholar 

  • Chen, T., Zhang, C., Qin, Y., Yang, H., Zhang, P., & Ye, F. (2017). Preparation of cationic mofs with mobile anions by anion stripping to remove 2,4-D from water. Materials, 10, 879.

    Article  CAS  Google Scholar 

  • Chen, W., & Huang, C. (2010). Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere, 79, 779–785.

    Article  CAS  Google Scholar 

  • Dantas, R., Contreras, S., Sans, C., & Esplugas, S. (2008). Sulfamethoxazole abatement by means of ozonation. Journal of Hazardous Materials, 150, 790.

    Article  CAS  Google Scholar 

  • De Andrade, J. R., Oliveira, M. F., Da Silva, M., & Vieira, M. (2018). Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: A review. Industrial & Engineering Chemistry Research, 57(9), 3103–3127.

    Article  CAS  Google Scholar 

  • Dutta, M., Dutta, N., & Bhattacharya, K. (1999). Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon. Separation and Purification Technology, 16, 213–224.

    Article  CAS  Google Scholar 

  • Ersan, M., Bagda, E., & Bagda, E. (2013). Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels. Colloids and Surfaces B: Biointerfaces, 104, 75–82.

    Article  CAS  Google Scholar 

  • Fang, K., Ren, J., & Sun, Y. (2005). Effect of nickel precursors on the performance of Ni/AlMCM-41 catalysts for n-dodecane hydroconversion. Journal of Molecular Catalysis A: Chemical, 229(1), 51–58.

    Article  CAS  Google Scholar 

  • Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 309, 2040–2042.

    Article  CAS  Google Scholar 

  • Furukawa, S., Reboul, J., Diring, S., Sumida, K., & Kitagawa, S. (2014). Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chemical Society Reviews, 43, 5700–5734.

    Article  CAS  Google Scholar 

  • Gao, J., & Pedersen, J. (2005). Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 39, 9509–9516.

    Article  CAS  Google Scholar 

  • Gao, Y., Liu, K., Kang, R., Xia, J., Yu, G., & Deng, S. (2018). A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. Journal of Hazardous Materials, 359, 248–257.

    Article  CAS  Google Scholar 

  • Gobara, H. M. (2012). Characterization and catalytic activity of NiO/mesoporous aluminosilicate AlSBA-15 in conversion of some hydrocarbons. Egyptian Journal of Petroleum, 21(1), 1–10.

    Article  CAS  Google Scholar 

  • Guo, W., Shi, Y., Wang, H., Yang, H., & Zhang, G. (2010). Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride. Ultrasonics Sonochemistry, 17, 680–684.

    Article  CAS  Google Scholar 

  • Hasan, Z., & Hwa, S. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 283, 329–339.

    Article  CAS  Google Scholar 

  • Hasan, Z., Choi, E.-J., & Jhung, S. H. (2013). Adsorption of naproxen and clofibric acid over a metal−organic framework MIL-101 functionalized with acidic and basic groups. Chemical Engineering Journal, 219, 537–544.

    Article  CAS  Google Scholar 

  • Hasan, Z., Khan, N. A., & Jhung, S. H. (2016). Adsorptive removal of diclofenac sodium from water with Zr-based metal−organic frameworks. Chemical Engineering Journal, 284, 1406–1413.

    Article  CAS  Google Scholar 

  • Herbst, A., Khutia, A., & Janiak, C. (2014). Brønsted instead of Lewis acidity in functionalized mil-101cr Mofs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorganic Chemistry, 53(14), 7319–7333.

    Article  CAS  Google Scholar 

  • Hernandez-Maldonado, A. J., & Yang, R. T. (2003). Desulfurization of liquid fuels by adsorptionvia π-complexation with Cu(I)-Y and Ag-Y zeolites. Industrial Engineering Chemistry Research, 42, 123–129.

    Article  CAS  Google Scholar 

  • Hernández-Maldonado, A. J., & Yang, R. T. (2004). Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X-and Y-zeolites. Industrial Engineering Chemistry Research, 43(4), 1081–1089.

    Article  CAS  Google Scholar 

  • Hong, D., Hwang, Y. K., Serre, C., Férey, G., & Chang, J. (2009). Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Advances Functional Materials, 19, 1537–1552.

    Article  CAS  Google Scholar 

  • Janiak, C., & Vieth, J. (2010). MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34, 2366–2388.

    Article  CAS  Google Scholar 

  • Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalalisys B: Environmental, 70, 479–487.

    Article  CAS  Google Scholar 

  • Ji, L., Chen, W., Duan, L., & Zhu, D. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environmental Science and Technology, 43, 2322–2327.

    Article  CAS  Google Scholar 

  • Jin, J., Yang, Z., Xiong, W., Zhou, Y., Xu, R., Zhang, Y., & Zhou, C. (2019). Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions. Science of the Total Environment, 650, 408–418.

    Article  CAS  Google Scholar 

  • Karmakar, S., Roy, D., Janiak, C., & De, S. (2019). Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal organic framework: Experimental and modeling approach. Separation and Purification Technology, 215, 259–275.

    Article  CAS  Google Scholar 

  • Khan, N. A., & Jhung, S. H. (2017). Adsorptive removal and separation of chemicals with metal-organic frameworks: Contribution of π-complexation. Journal of Hazardous Materials, 325, 198–213.

    Article  CAS  Google Scholar 

  • La Farré, M., Pérez, S., Kantiani, L., & Barcelo, D. (2008). Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends in Analytical Chemistry, 27, 991–1007.

    Article  CAS  Google Scholar 

  • Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., & Yuan, Z. (2012). Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Applied Materials & Interfaces, 4, 5749–5760.

    Article  CAS  Google Scholar 

  • Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NiO. Industrial Engineering Chemistry Research, 50, 10017–10023.

    Article  CAS  Google Scholar 

  • Navalon, S., Alvaro, M., & Garcia, H. (2008). Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three β-lactam antibiotics with ClO2. Water Research, 42, 1935–1942.

    Article  CAS  Google Scholar 

  • Peterson, J., Petrasky, L., Seymour, M., Burkhart, R., & Schuiling, A. (2012). Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanoparticles in water. Chemosphere, 87, 911–917.

    Article  CAS  Google Scholar 

  • Phong, V. H. N., Le, G. K., Hong Nguyen, T. M., Bui, X.-T., Nguyen, K. H., Rene, E. R., & Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236, 124391.

    Article  CAS  Google Scholar 

  • Putra, E., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 43, 2419–2430.

    Article  CAS  Google Scholar 

  • Qin, F. X., Jia, S. Y., Liu, Y., Li, H. Y., & Wu, S. H. (2015). Adsorptive removal of bisphenol from aqueous solution using metal-organic frameworks. Desalination and Water Treatment, 54, 93–102.

    Article  CAS  Google Scholar 

  • Raven, P. H., Johnson, G. B., Mason, K. A., Losos, J. B., and Singer, S. R. (2014). The nature of molecules and properties of water. In Biology (10th ed., AP ed., pp. 17-30). New York: McGraw-Hill.

  • Rivera-Jiménez, S., & Hernández-Maldonado, A. (2008). Nickel(II) grafted MCM-41: A novel sorbent for the removal of naproxen from water. Microporous and Mesoporous Materials, 116, 246–252.

    Article  CAS  Google Scholar 

  • Seo, P. W., Khan, N. A., & Jhung, S. H. (2017). Removal of nitroimidazole antibiotics from water by adsorption over metal−organic frameworks modified with urea or melamine. Chemical Engineering Journal, 315, 92–100.

    Article  CAS  Google Scholar 

  • Su, S., Guo, W., Yi, C., Leng, Y., & Ma, Z. (2012). Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation. Ultrasonics Sonochemistry, 19, 469–474.

    Article  CAS  Google Scholar 

  • Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., & Bazzicalupi, C. (2011). Mechanism of paracetamol removal by vegetable wastes: The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination, 270, 135–142.

    Article  CAS  Google Scholar 

  • Wang, T., Li, X., Dai, W., Fang, Y., & Huang, H. (2015). Enhanced adsorption of dibenzothiophene with zinc/copper-based metal-organic frameworks. Journal of Materials Chemistry A, 3, 21044–21050.

    Article  CAS  Google Scholar 

  • Xie, L., Liu, S., Han, Z., Jiang, R., Liu, H., Zhu, F., Zeng, F., Su, C., & Ouyang, G. (2015). Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Analytica Chimica Acta, 853, 303–310.

    Article  CAS  Google Scholar 

  • Xiong, W., Zeng, Z., Li, X., Zeng, G., Xiao, R., Yang, Z., & Qin, L. (2019). Ni-doped MIL-53(Fe) nanoparticles for optimized doxycycline removal by using response surface methodology from aqueous solution. Chemosphere, 232, 186–194.

    Article  CAS  Google Scholar 

  • Xu, L., Pan, J., Dai, J., Li, X., Hang, H., Cao, Z., & Yan, Y. (2012). Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. Journal of Hazardous Materials, 233, 48–56.

    Article  CAS  Google Scholar 

  • Yu, F., Ma, J., Wang, J., Zhang, M., & Zheng, J. (2016). Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere, 146, 162–172.

    Article  CAS  Google Scholar 

  • Zhang, L. J., Li, F. Q., Ren, J. X., Ma, L. B., & Li, M. Q. (2018). Preparation of metal organic frameworks MIL-101 (Cr) with acetic acid as mineralizer. IOP Conference Series: Earth and Environmental Science, 199, 042038.

    Article  Google Scholar 

  • Zhang, X., Wu, F., Wu, X., Chen, P., & Deng, N. (2008). Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials, 157, 300–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to DI – consolidado 039.369 – PUCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Baeza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeza, P., Astudillo, C., Diaz, M. et al. Effect of the Incorporation of Ni in the Adsorption Capacity of Paracetamol (N-Acetyl-P-Aminophenol) on MIL-101(Cr). Water Air Soil Pollut 231, 245 (2020). https://doi.org/10.1007/s11270-020-04584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04584-0

Keywords

Navigation