Skip to main content
Log in

Mechanistic Insights into TiO2 and ZnO Nanoparticle-Induced Metabolic Changes in Escherichia coli Under Solar Simulated Light Irradiation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated the metabolic response of E. coli after exposure to TiO2 and ZnO NPs under solar simulated irradiation. A total of 14 altered metabolites involved in two metabolic pathways were recognized using multivariate analysis. Polyamine, putrescine was elevated in ZnO-treated group, as an adaptation to oxidative stress in cells, whereas it was significantly reduced in TiO2-treated group. Glycine levels also were elevated in both the treatment groups, showing cellular protection in cells after exposure. In addition, glycine, serine, and threonine metabolism and arginine and proline metabolism were altered in ZnO and TiO2-treated groups respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q., & Vivanco, J. M. (2013). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 288(7), 4502–4512.

    Article  CAS  Google Scholar 

  • Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., et al. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201–1214. https://doi.org/10.1016/j.jfda.2018.06.011.

    Article  CAS  Google Scholar 

  • Chatzimitakos, T. G., & Stalikas, C. D. (2016). Qualitative alterations of bacterial metabolome after exposure to metal nanoparticles with bactericidal properties: a comprehensive workflow based on 1H NMR, UHPLC-HRMS, and metabolic databases. Journal of Proteome Research, 15(9), 3322–3330.

    Article  CAS  Google Scholar 

  • Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical Chemistry, 78(7), 2262–2267.

    Article  CAS  Google Scholar 

  • Dasari, T. P., Pathakoti, K., & Hwang, H.-M. (2013). Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, co3O4 and TiO2) to E. coli bacteria. Journal of Environmental Sciences (China).

  • Drazic, A., Kutzner, E., Winter, J., & Eisenreich, W. (2015). Metabolic response of Escherichia coli upon treatment with hypochlorite at sub-lethal concentrations. PLoS One, 10(5), e0125823.

    Article  Google Scholar 

  • Erdem, A., Metzler, D., Cha, D., & Huang, C. (2015). Inhibition of bacteria by photocatalytic nano-TiO 2 particles in the absence of light. International journal of Environmental Science and Technology, 12(9), 2987–2996.

    Article  CAS  Google Scholar 

  • Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee, D. Y., Lu, Y., et al. (2008). Quality control for plant metabolomics: reporting MSI-compliant studies. The Plant Journal, 53(4), 691–704.

    Article  CAS  Google Scholar 

  • Garcia-Contreras, R., Sugimoto, M., Umemura, N., Kaneko, M., Hatakeyama, Y., Soga, T., et al. (2015). Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model. Biomaterials, 57, 33–40.

    Article  CAS  Google Scholar 

  • Gray, M. J., Wholey, W.-Y., & Jakob, U. (2013). Bacterial responses to reactive chlorine species. Annual Review of Microbiology, 67, 141–160.

    Article  CAS  Google Scholar 

  • Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    Article  CAS  Google Scholar 

  • Li, J., Ren, L. J., Sun, G.-N., Qu, L., & Huang, H. (2013). Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. OMICS: A Journal of Integrative Biology, 17(5), 269–281.

    Article  CAS  Google Scholar 

  • Lin, X., Li, J., Ma, S., Liu, G., Yang, K., Tong, M., et al. (2014). Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One, 9(10), e110247.

    Article  Google Scholar 

  • Linsebigler, A. L., Lu, G., & Yates Jr., J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758.

    Article  CAS  Google Scholar 

  • Nel, A., Xia, T., Meng, H., Wang, X., Lin, S., Ji, Z., et al. (2012). Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Accounts of Chemical Research, 46(3), 607–621.

    Article  Google Scholar 

  • Ng, A. M. C., Chan, C. M. N., Guo, M. Y., Leung, Y. H., Djurišić, A. B., Hu, X., et al. (2013). Antibacterial and photocatalytic activity of TiO 2 and ZnO nanomaterials in phosphate buffer and saline solution. Applied Microbiology and Biotechnology, 97(12), 5565–5573.

    Article  CAS  Google Scholar 

  • Pathakoti, K., Goodla, L., Manubolu, M., & Tencomnao, T. (2017). Metabolic alterations and the protective effect of punicalagin against glutamate-induced oxidative toxicity in HT22 cells. Neurotoxicity Research, 31(4), 521–531.

    Article  CAS  Google Scholar 

  • Pathakoti, K., Huang, M.-J., Watts, J. D., He, X., & Hwang, H.-M. (2014). Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 130, 234–240. https://doi.org/10.1016/j.jphotobiol.2013.11.023.

    Article  CAS  Google Scholar 

  • Pathakoti, K., Hwang, H. M., Wang, X., & Aker, W. G. (2013a). Photoinduced toxicity of CdSe/ZnS quantum dots with different surface coatings to Escherichia coli. International Journal of Nanotechnology, 10(12), 1093–1108.

    Article  CAS  Google Scholar 

  • Pathakoti, K., Manubolu, M., & Hwang, H.-M. (2018). Nanotechnology applications for environmental industry. In Handbook of Nanomaterials for Industrial Applications (pp. 894-907): Elsevier.

  • Pathakoti, K., Manubolu, M., & Hwang, H.-M. (2019). Effect of size and crystalline phase of TiO2 nanoparticles on photocatalytic inactivation of Escherichia coli. Journal of Nanoscience and Nanotechnology, 19(12), 8172–8179.

    Article  CAS  Google Scholar 

  • Pathakoti, K., Morrow, S., Han, C., Pelaez, M., He, X., Dionysiou, D. D., et al. (2013b). Photoinactivation of Escherichia coli by sulfur-doped and nitrogen–fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation. Environmental Science & Technology, 47(17), 9988–9996. https://doi.org/10.1021/es401010g.

    Article  CAS  Google Scholar 

  • Planchon, M., Ferrari, R., Guyot, F., Gélabert, A., Menguy, N., Chanéac, C., et al. (2013). Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids and Surfaces B: Biointerfaces, 102, 158–164.

    Article  CAS  Google Scholar 

  • Planchon, M., Léger, T., Spalla, O., Huber, G., & Ferrari, R. (2017). Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS One, 12(6), e0178437. https://doi.org/10.1371/journal.pone.0178437.

    Article  CAS  Google Scholar 

  • Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T. P., Michalkova, A., et al. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology, 6(3), 175.

    Article  CAS  Google Scholar 

  • Tkachenko, A., Nesterova, L., & Pshenichnov, M. (2001). The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Archives of Microbiology, 176(1–2), 155–157.

    Article  CAS  Google Scholar 

  • Wortham, B. W., Oliveira, M. A., & Patel, C. N. (2007). Polyamines in bacteria: pleiotropic effects yet specific mechanisms. In The genus Yersinia (pp. 106-115): Springer.

  • Wu, N., Yu, Y., Li, T., Ji, X., Jiang, L., Zong, J., et al. (2016). Investigating the influence of mos2 nanosheets on E. coli from metabolomics level. PloS one, 11(12), e0167245.

  • Xia, J., & Wishart, D. S. (2010). MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26(18), 2342–2344.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhao, Y., Li, F., Li, L., Feng, Y., Min, L., et al. (2018). Zinc oxide nanoparticle caused plasma metabolomic perturbations correlate with hepatic steatosis. Frontiers in Pharmacology, 9, 57.

    Article  Google Scholar 

  • Zhao, H. L., Tang, Z. X., Zhang, Q. G., You, J. H., & Chen, Q. D. (2009). Inorganic synthesis in ionic liquids. [article]. Progress in Chemistry, 21(10), 2077–2083.

    CAS  Google Scholar 

  • Zhong, Z., Wheeler, M. D., Li, X., Froh, M., Schemmer, P., Yin, M., et al. (2003). L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current Opinion in Clinical Nutrition & Metabolic Care, 6(2), 229–240.

    Article  CAS  Google Scholar 

  • Zhu, X., Pathakoti, K., & Hwang, H.-M. (2019). Chapter 10 - Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In A. K. Shukla, & S. Iravani (Eds.), Green Synthesis, Characterization and Applications of Nanoparticles (pp. 223-263): Elsevier.

Download references

Funding

This study was supported by the National Science Foundation-Centers of Research Excellence in Science and Technology (NSF-CREST) program under grant no. HRD-1547754 to Jackson State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kavitha Pathakoti or Huey-min Hwang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathakoti, K., Manubolu, M. & Hwang, Hm. Mechanistic Insights into TiO2 and ZnO Nanoparticle-Induced Metabolic Changes in Escherichia coli Under Solar Simulated Light Irradiation. Water Air Soil Pollut 231, 16 (2020). https://doi.org/10.1007/s11270-019-4388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4388-2

Keywords

Navigation