Skip to main content
Log in

Importance of Organic Matter to the Retention and Transport of Bisphenol A and Bisphenol S in Saturated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) and bisphenol S (BPS) are frequently detected in soils and groundwater, which may pose threats to public health and the environment. However, the fate and transport of BPA/BPS in the subsurface media are still not clear. In this study, the retention and transport of BPA/BPS in three different natural soils were investigated with column experiments and mathematical modeling. The results showed that both BPA and BPS had high mobility in saturated soil A (Xinjiang soil), medium mobility in soil B (Changshu soil) media, and no mobility in the soil C (Jilin soil). There was a negative correlation between the mobility of BPA/BPS and soil organic matter (SOM) content because of the strong sorption of BPA/BPS on SOM. BPS showed higher mobility than BPA in the three soils. In addition, with the reduction of SOM of the soil B and C (after H2O2-treatment), the mobility of BPA/BPS enhanced dramatically. All these suggest that SOM played a significant role in controlling the retention and transport of BPA/BPS in the soil. Furthermore, the two-site kinetic model simulated the BPA/BPS transport experiment results very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banzhaf, S., & Hebig, K. H. (2016). Use of column experiments to investigate the fate of organic micropollutants—a review. Hydrology and Earth System Sciences Discussions, 20(9), 1–35.

    Article  Google Scholar 

  • Berhane, T. M., Levy, J., Krekeler, M. P. S., & Danielson, N. D. (2016). Adsorption of bisphenol A and ciprofloxacin by palygorskite-montmorillonite: effect of granule size, solution chemistry and temperature. Applied Clay Science, 132, 518–527.

    Article  Google Scholar 

  • Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research International, 22(8), 5711–5741.

    Article  CAS  Google Scholar 

  • Chefetz, B., Mualem, T., & Ben-Ari, J. (2008). Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere, 73(8), 1335.

    Article  CAS  Google Scholar 

  • Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y. L., Wu, Y., et al. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environmental Science & Technology, 50(11), 5438–5453.

    Article  CAS  Google Scholar 

  • Choi, Y. J., & Lee, L. S. (2017). Partitioning behavior of bisphenol alternatives BPS and BPAF compared to BPA. Environmental Science & Technology, 51(7), 3725–3732.

    Article  CAS  Google Scholar 

  • Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., et al. (2015). Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response, 13(3), 1–29.

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., et al. (2009). Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocrine Reviews, 30(4), 293–342.

    Article  CAS  Google Scholar 

  • Francisco, B., Luis, C. J., Elvira, S., & Daniel, G. (2004). Transport of atrazine and metribuzin in three soils of the humid pampas of Argentina. Weed Technology, 18(1), 1–8.

    Article  Google Scholar 

  • He, Y., Xu, J., Wang, H., Zhang, Q., & Muhammad, A. (2006). Potential contributions of clay minerals and organic matter to pentachlorophenol retention in soils. Chemosphere, 65(3), 497–505.

    Article  CAS  Google Scholar 

  • Hengstler, J. G., Foth, H., Gebel, T., Kramer, P. J., Lilienblum, W., Schweinfurth, H., et al. (2011). Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Critical Reviews in Toxicology, 41(4), 263–291.

    Article  CAS  Google Scholar 

  • Huang, Y. Q., Wong, C. K. C., Zheng, J. S., Bouwman, H., Barra, R., Wahlstrom, B., et al. (2012). Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environment International, 42, 91–99.

    Article  CAS  Google Scholar 

  • Im, J., & Loffler, F. E. (2016). Fate of bisphenol A in terrestrial and aquatic environments. Environmental Science & Technology, 50(16), 8403–8416.

    Article  CAS  Google Scholar 

  • Kang, J. H., Kondo, F., & Katayama, Y. (2006). Human exposure to bisphenol A. Toxicology, 226(2–3), 79.

    Article  CAS  Google Scholar 

  • Lewis, J., & Sjöstrom, J. (2010). Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of Contaminant Hydrology, 115(1–4), 1–13.

    Article  CAS  Google Scholar 

  • Li, J., Zhou, B., Liu, Y., Yang, Q., & Cai, W. (2008). Influence of the coexisting contaminants on bisphenol A sorption and desorption in soil. Journal of Hazardous Materials, 151(2–3), 389–393.

    Article  CAS  Google Scholar 

  • Loffredo, E., & Senesi, N. (2006a). Fate of anthropogenic organic pollutants in soils with emphasis on adsorption/desorption processes of endocrine disruptor compounds. Pure and Applied Chemistry, 78(5), 947–961.

    Article  CAS  Google Scholar 

  • Loffredo, E., & Senesi, N. (2006b). The role of humic substances in the fate of anthropogenic organic pollutants in soil with emphasis on endocrine disruptor compounds. In Soil and water pollution monitoring, protection and remediation (Vol. 69, pp. 69–92, NATO Science Series IV-Earth and Environmental Sciences).

  • Magdoff, F. R., Tabatabai, M. A., & Hanlon, E. A. (1996). Soil organic matter testing: an overview. Soil Organic Matter: Analysis and Interpretation, 1–9.

  • Ou, Y. H., Chang, Y. J., Lin, F. Y., Chang, M. L., Yang, C. Y., & Shih, Y. H. (2016). Competitive sorption of bisphenol A and phenol in soils and the contribution of black carbon. Ecological Engineering, 92, 270–276.

    Article  Google Scholar 

  • Qin, Q., Chen, X., & Zhuang, J. (2017). The surface-pore integrated effect of soil organic matter on retention and transport of pharmaceuticals and personal care products in soils. Science of the Total Environment, 42, 599–600.

    Google Scholar 

  • Shen, J., Wang, X., Zhang, Z., Sui, Y., Wu, H., Feng, J., et al. (2017). Adsorption and degradation of (14) C-bisphenol A in a soil trench. Science of the Total Environment, 607, 676–682.

    Article  Google Scholar 

  • Shi, Y., Sun, Y., Gao, B., Xu, H., Shi, X., & Wu, J. (2018). Retention and transport of bisphenol A and bisphenol S in saturated limestone porous media. Water, Air, & Soil Pollution, 229(8), 260.

    Article  Google Scholar 

  • Simunek, J., & van Genuchten, M. T. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal, 7(2), 782–797.

    Article  Google Scholar 

  • Staples, C. A., Dorn, P. B., Klecka, G. M., O'Block, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36(10), 2149–2173.

    Article  CAS  Google Scholar 

  • Sun, W. L., Ni, J. R., & Liu, T. T. (2006). Effect of sediment humic substances on sorption of selected endocrine disruptors. Water, Air, & Soil Pollution: Focus, 6(5–6), 583–591.

    Article  CAS  Google Scholar 

  • Sun, K., Gao, B., Zhang, Z., Zhang, G., Liu, X., Zhao, Y., et al. (2010). Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments. Chemosphere, 80(7), 709–715.

    Article  CAS  Google Scholar 

  • Sun, K., Jin, J., Gao, B., Zhang, Z., Wang, Z., Pan, Z., et al. (2012). Sorption of 17α-ethinyl estradiol, bisphenol A and phenanthrene to different size fractions of soil and sediment. Chemosphere, 88(5), 577–583.

    Article  CAS  Google Scholar 

  • Wu, L., Zhang, X., Wang, F., Gao, C., Chen, D., Palumbo, J., et al. (2017). Occurrence of bisphenol S in the environment and implications for human exposure: a short review. Science of the Total Environment, 615, 87–98.

    Article  Google Scholar 

  • Xu, X., Wang, Y., & Li, X. (2008). Sorption behavior of bisphenol A on marine sediments. Journal of Environmental Science and Health Part A, 43, 239–246.

    Article  CAS  Google Scholar 

  • YasuoHarada, & AkioInoko. (2012). Cation-exchange properties of soil organic matter. Soil Science & Plant Nutrition, 21(4), 361–369.

    Google Scholar 

  • Ying, G.-G., Kookana, R. S., & Dillon, P. (2003). Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research, 37(15), 3785–3791.

    Article  CAS  Google Scholar 

  • Zakari, S., Hui, L., Lei, T., Yan, W., & Liu, J. (2016). Transport of bisphenol-A in sandy aquifer sediment: column experiment. Chemosphere, 144, 1807–1814.

    Article  CAS  Google Scholar 

  • Zalmanova, T., Hoskova, K., Nevoral, J., Prokesova, S., Zamostna, K., Kott, T., et al. (2016). Bisphenol S instead of bisphenol A: a story of reproductive disruption by regretable substitution—a review. Czech Journal of Animal Science, 61(10), 433–449.

    Article  CAS  Google Scholar 

  • Zeng, G., Zhang, C., Huang, G., Yu, J., Wang, Q., Li, J., et al. (2006). Adsorption behavior of bisphenol A on sediments in Xiangjiang River, central-south China. Chemosphere, 65(9), 1490–1499.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Wang, J. (2011). Determination of retardation effect of soil organic matter on aqueous leaching of polycyclic aromatic hydrocarbons. In International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (pp. 2039–2042).

  • Zhang, B., Yao, S., Wignall, P. B., Hu, W., Ding, H., Liu, B., et al. (2018). Widespread coastal upwelling along the Eastern Paleo-Tethys Margin (South China) during the Middle Permian (Guadalupian): implications for organic matter accumulation. Marine and Petroleum Geology, 97, 113–126.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (2018YFC0406401-2) and the National Natural Science Foundation of China-Xianjiang project (U1503282).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Sun or Jichun Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Sun, Y., Gao, B. et al. Importance of Organic Matter to the Retention and Transport of Bisphenol A and Bisphenol S in Saturated Soils. Water Air Soil Pollut 230, 43 (2019). https://doi.org/10.1007/s11270-019-4096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4096-y

Keywords

Navigation