Skip to main content
Log in

Plant Accumulation of Natural Radionuclides as Affected by Substrate Contaminated with Uranium-Mill Tailings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Environmental concern due to plant accumulation of natural radionuclides is a major concern in uranium mining areas. To evaluate the risk associated with the transfer of radionuclides to edible plants, the uptake of 238U, 226Ra, and 210Pb by Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) grown in soils contaminated with uranium-mill tailings (UMT) was investigated. Test plants were grown under controlled conditions in substrate composed of soil and UMT in different ratios. Activity concentrations of 238U, 226Ra, and 210Pb in substrate, leaves, and roots were measured and the concentration ratios determined. Soil characteristics were determined, since they directly affect bioavailability of radionuclides. Concentration ratios of 238U, 226Ra, and 210Pb in leaves varied from 0.001 to 0.006, 0.024 to 0.172, and 0.004 to 0.011, respectively, and in roots from 0.020 to 0.126, 0.015 to 0.241, and 0.033 to 1.460, respectively. Concentrations of 238U, 226Ra, and 210Pb in leaves and roots were found to correlate with the amount of 238U, 226Ra, and 210Pb in the substrate. A higher amount of 226Ra accumulated in aboveground parts (57–877 Bq kg−1 d. m. for leaves) compared to 238U (0.6–4.7 Bq kg−1 d. m. for leaves) and 210Pb (8–53 Bq kg−1 d. m. for leaves), which were mainly stored in the roots. The relationships between the amount of radionuclides in plants and soil characteristics and their role in radionuclide uptake are discussed and critically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benedik, L., Klemencic, H., Repinc, U., & Vreček, P. (2003). Uranium and its decay products in samples contaminated with uranium mine and mill wastes. Journal Physics, IV France, 107, 147–150.

    Article  CAS  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: a comparison of three European cities. Journal of Environmental Quality, 36, 70–79.

    Article  CAS  Google Scholar 

  • Carvalho, F. P., Oliveira, J. M., Neves, M. O., Abreu, M. M., & Vicente, E. M. (2009). Soil to plant (Solanum tuberosum L.) radionuclide transfer in the vicinity of an old uranium mine. Geochemistry: Exploration, Environment Analysis, A, 9, 275–278.

    CAS  Google Scholar 

  • Černe, M., Smodiš, B., Štrok, M., & Jaćimović, R. (2010). Accumulation of 238U, 226Ra and 230Th by wetland plants in a vicinity of U-mill tailings at Žirovski vrh (Slovenia). Journal of Radioanalytical and Nuclear Chemistry, 286, 323–327.

    Article  Google Scholar 

  • Černe, M., Smodiš, B., & Štrok, M. (2011). Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Žirovski vrh. Nuclear Engineering and Design, 241, 1282–1286.

    Article  Google Scholar 

  • Chang, P., Kim, K. W., Yoshida, S., & Kim, S. Y. (2005). Uranium accumulation of crop plants enhanced by citric acid. Environmental Geochemistry and Health, 27, 529–538.

    Article  CAS  Google Scholar 

  • Chang, Y.-T., Hseu, Z.-Y., & Zehetner, F. (2014). Evaluation of phytoavailability of heavy metals to Chinese cabbage (Brassica chinensis L.) in rural soils. The Scientific World Journal. https://doi.org/10.1155/2014/309396.

    Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Hu, Q. H. (2005). Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity, 82, 223–236.

    Article  CAS  Google Scholar 

  • Choi, M. S., Lin, X. J., Lee, S. A., Kim, W., Kang, H. D., Doh, S. H., Kim, D. S., & Lee, D. M. (2008). Daily intakes of naturally occurring radioisotopes in typical Korean foods. Journal of Environmental Radioactivity, 99, 1319–1323.

    Article  CAS  Google Scholar 

  • Cochran, W. G., & Cox, G. M. (1992). Experimental designs, second edition. New York: Wiley.

    Google Scholar 

  • Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Analytical Chemistry, 40, 586–593.

    Article  CAS  Google Scholar 

  • Duquène, L., Vandenhove, H., Tack, F., Meers, E., Baeten, J., & Wannijn, J. (2009). Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Science of the Total Environment, 407, 1496–1505.

    Article  Google Scholar 

  • Ebbs, S. D., Brady, D. J., & Kochian, L. V. (1998). Role of uranium speciation in the uptake and translocation of uranium by plants. Journal of Experimental Botany, 49, 1183–1190.

    Article  CAS  Google Scholar 

  • Ehlken, S., & Kirchner, G. (2002). Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. Journal of Environmental Radioactivity, 58, 97–112.

    Article  CAS  Google Scholar 

  • Ekdal, E., Karali, T., & Sac, M. M. (2006). 210Po and 210Pb in soils and vegetables in Kucuk Menderes basin of Turkey. Radiation Measurements, 41, 72–77.

    Article  CAS  Google Scholar 

  • Gerzabek, M. H., Strebl, F., & Temmel, B. (1998). Plant uptake of radionuclides in lysimeter experiments. Environmental Pollution, 99, 93–103.

    Article  CAS  Google Scholar 

  • Gramss, G., Voigt, K.-D., & Bergmann, H. (2004). Plant availability and leaching of (heavy) metals from ammonium-, calcium-, carbohydrate-, and citric acid-treated uranium-mine-dump soil. Journal of Plant Nutrition and Soil Science, 167, 417–427.

    Article  CAS  Google Scholar 

  • Gregorič, A. (2013). Radon as a tool in geophysical research. PhD thesis, Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.

  • Hegazy, A. K., Afifi, S. Y., Alatar, A. A., Alwathnani, H. A., & Emam, M. H. (2013). Soil characteristics influence the radionuclide uptake of different plant species. Chemistry and Ecology, 29(3), 255–269.

    Article  CAS  Google Scholar 

  • Huang, J. W., Blaylock, M. J., Kapulnik, Y., & Ensley, B. D. (1998). Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science and Technology, 32(13), 2004–2008.

    Article  CAS  Google Scholar 

  • International Atomic Energy Agency-IAEA (2016). Criteria for radionuclide activity concentrations for food and drinking water, IAEA-TECDOC-1788.

  • Jaćimović, R. (2003). Evaluation of the use of the TRIGA Mark II reactor for the k0-method of activation analysis (in-Slovene), PhD Thesis, University of Ljubljana.

  • Jaćimović, R., Smodiš, B., Bučar, T., & Stegnar, P. (2003). k0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software. Journal of Radioanalytical and Nuclear Chemistry, 257, 659–663.

    Article  Google Scholar 

  • Kobal, I., Vaupotič, J., Dujmović, P., Kotnik, J., Gobec, S., & Zorko, B. (2005). Outdoor radon in Slovenia. In: IJS-DP 9270, Jožef Stefan Institute, Ljubljana [in Slovene].

  • Križman, M., Byrne, A. R., & Benedik, L. (1995). Distribution of 230Th in milling wastes from the Žirovski vrh uranium mine (Slovenia) and its radioecological implications. Journal of Environmental Radioactivity, 26, 223–235.

    Article  Google Scholar 

  • Laurette, J., Larue, C., Mariet, C., Brisset, F., Khodja, H., Bourguignon, J., & Carrière, M. (2012). Influence of uranium speciation on its accumulation and translocation in three plant species: Oilseed rape, sunflower and wheat. Environmental and Experimental Botany, 77, 96–107.

    Article  CAS  Google Scholar 

  • Lauria, D. C., Ribeiro, F. C. A., Conti, C. C., & Loureiro, F. A. (2009). Radium and uranium levels in vegetables grown using different farming management systems. Journal of Environmental Radioactivity, 100, 176–183.

    Article  CAS  Google Scholar 

  • Liu, W., Zhou, Q., An, J., Sun, Y., & Liu, R. (2010). Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials, 173, 737–743.

    Article  CAS  Google Scholar 

  • Madruga, M. J., Brogueira, A., Alberto, G., & Cardoso, F. (2001). 226Ra bioavailability to plants at the Uregiriça uranium mill tailings site. Journal of Environmental Radioactivity, 54, 175–188.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd edition, Academic Press, London.

    Chapter  Google Scholar 

  • Nathwani, J. S., & Phillips, C. R. (1979). Adsorption of Ra-226 by soils (I). Chemosphere, 5, 285–291.

    Article  Google Scholar 

  • Persson, B. R. R., & Holm, E. (2011). Polonium-210 and lead-210 in the terrestrial environment: a historical review. Journal of Environmental Radioactivity, 102, 420–429.

    Article  CAS  Google Scholar 

  • Petrescu, L., & Bilal, E. (2003). Plant availability of uranium in contaminated soil from Crucea mine (Romania). Environmental Geosciences, 10(3), 123–135.

    Article  Google Scholar 

  • Petrova, R. (2006). Accumulation of natural radionuclides in wooden and grass vegetation from abandoned uranium mines. Opportunities for phytoremediation. In B. J. Merkel & A. Hasche-Berger (Eds.), Uranium in the environment (pp. 507–518). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Pietrzak-Flis, Z., & Skowrońska-Smolak, M. (1995). Transfer of 210Pb and 210Po to plants via root system and above-ground interception. Science of the Total Environment, 162, 139–147.

    Article  CAS  Google Scholar 

  • Popa, K., Tykva, R., Podracká, E., & Humelnicu, D. (2008). 226Ra translocation from soil to selected vegetation in the Crucea (Romania) uranium mining area. Journal of Radioanalytical and Nuclear Chemistry, 278, 211–213.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2010). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ramaswami, A., Carr, P., & Burkhardt, M. (2001). Plant-uptake of uranium: hydroponic and soil system studies. International Journal of Phytoremediation, 3, 189–201.

    Article  CAS  Google Scholar 

  • Rodríguez, P. B., Tomé, F. V., & Lozano, J. C. (2002). About the assumption of linearity in soil-to-plant transfer factors for uranium and thorium isotopes and 226Ra. The Science of the Total Environment, 284, 167–175.

    Article  Google Scholar 

  • Rufyikiri, G., Wannijn, J., Wang, L., & Thiry, Y. (2006). Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris. Environmental Pollution, 141, 420–427.

    Article  CAS  Google Scholar 

  • Shahandeh, H., & Hossner, L. R. (2002). Role of soil properties in phytoaccumulation of uranium. Water, Air & Soil Pollution, 141, 165–180.

    Article  CAS  Google Scholar 

  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219–220, 1–12.

    Article  Google Scholar 

  • Simon, S. L., & Ibrahim, S. A. (1990). Biological uptake of radium by terrestrial plants. In The environmental behavior of radium: technical report series, no. 310. 545–599 (IAEA, 1990).

  • Soudek, P., Valenová, Š., Benešová, D., & Vanĕk, T. (2007). From laboratory experiments to large scale application-an example of phytoremediation of radionuclides. In N. Marmiroli (Ed.), Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents (pp. 139–158). New York: Springer.

    Chapter  Google Scholar 

  • Soudek, P., Petrová, Š., Benešová, D., Kotyza, J., Vágner, M., Vaňkova, R., & Vanĕk, T. (2010). Study of soil-plant transfer of 226Ra under greenhouse conditions. Journal of Environmental Radioactivity, 101, 446–450.

    Article  CAS  Google Scholar 

  • Stegnar, P., Shishkov, I., Burkitbayev, M., Tolongutov, B., Yunsov, M., Radyuk, R., & Salbu, B. (2012). Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia. Journal of Environmental Radioactivity, 123, 3–13.

    Article  Google Scholar 

  • Stojanović, M. D., Mihajlović, M. L., Milojković, J. V., Lopičić, Z. R., Adamović, M., & Stanković, S. (2012). Efficient phytoremediation of uranium mine tailings by tobacco. Environmental Chemistry Letters, 10, 377–381.

    Article  Google Scholar 

  • Štrok, M., & Smodiš, B. (2010). Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Žirovski vrh, Slovenia. Journal of Environmental Radioactivity, 101, 22–28.

    Article  Google Scholar 

  • Štrok, M., & Smodiš, B. (2013). Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nuclear Engineering and Design, 261, 279–284.

    Article  Google Scholar 

  • Štrok, M., Smodiš, B., & Petrinec, B. (2010). Natural radionuclides in sediments and rocks from Adriatic Sea. Journal of Radioanalytical and Nuclear Chemistry, 286, 303–308.

    Article  Google Scholar 

  • Štrok, M., Smodiš, B., & Eler, K. (2011). Natural radionuclides in trees grown on a uranium mill tailings waste pile. Environmental Science and Pollution Research, 18, 819–826.

    Article  Google Scholar 

  • Tykva, R., & Podracká, E. (2005). Bioaccumulation of 226Ra in the plants growing near uranium facilities. Nukleonika, 50, S25–S27.

    CAS  Google Scholar 

  • Tyler, G., & Olsson, T. (2001). Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant and Soil, 230, 307–321.

    Article  CAS  Google Scholar 

  • Vaaramaa, K., Solatie, D., & Aro, L. (2009). Distribution of 210Pb and 210Po concentrations in wild berries and mushrooms in boreal forest ecosystems. Science of the Total Environment, 408, 84–91.

    Article  CAS  Google Scholar 

  • Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8, 1–17.

    Article  CAS  Google Scholar 

  • Vandenhove, H., & Van Hees, M. (2007). Predicting radium availability and uptake from soil properties. Chemosphere, 69, 664–674.

    Article  CAS  Google Scholar 

  • Vandenhove, H., Sweeck, L., Mallants, D., Vanmarcke, H., Aitkulov, A., Sadyrov, O., Savosin, M., Tolongutov, B., Mirzachev, M., Clerc, J. J., Quarch, H., & Aitaliev, A. (2006). Assessment of radiation exposure in the uranium mining and milling area of Mailuu Suu, Kyrgyzstan. Journal of Environmental Radioactivity, 88, 118–139.

    Article  CAS  Google Scholar 

  • Vandenhove, H., Van Hees, M., Wannijn, J., Wouters, K., & Wang, L. (2007). Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index. Environmental Pollution, 145, 577–586.

    Article  CAS  Google Scholar 

  • Vodnik, D., Grčman, H., Maček, I., van Elteren, J. T., & Kovačevič, M. (2008). The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.

    Article  CAS  Google Scholar 

  • Vreček, P., & Benedik, L. (2002). Determination of 210Pb and 210Po in sediments, water, and plants in an area contaminated with mine waste. Mine, Water and the Environment, 21, 156–159.

    Article  Google Scholar 

  • Vreček, P., Benedik, L., & Pihlar, B. (2004). Determination of 210Pb and 210Po in sediment and soil leachates and in biological materials using a Sr-resin column and evaluation of column reuse. Applied Radiation and Isotopes, 60, 717–723.

    Article  Google Scholar 

  • Zhu, Y.-G., & Smolders, E. (2000). Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany, 51(351), 1635–1645.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Rudnik Žirovski vrh company for their cooperation and assistance. The authors also thank Dr. David Heath for his help in reviewing the paper. The support of Dr. Vaupotič for the 222Rn measurements is highly appreciated. The Department of Environmental Sciences of the “Jožef Stefan Institute” is also acknowledged for the management, technical, and analytical support of the study.

Funding

The Slovenian Research Agency is acknowledged for its financial support (contract No. P2-0075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Černe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Černe, M., Smodiš, B., Štrok, M. et al. Plant Accumulation of Natural Radionuclides as Affected by Substrate Contaminated with Uranium-Mill Tailings. Water Air Soil Pollut 229, 371 (2018). https://doi.org/10.1007/s11270-018-4000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-4000-1

Keywords

Navigation