Skip to main content
Log in

Use of Rh (III)-Heteropolymolybdate as Potential Catalysts for the Removal of Nitrates in Human Drinking Water: Synthesis, Characterisation and Catalytic Performance

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The investigation and development of technologies to remediate water contaminated with NO3 are constantly increasing. An economically and potentially effective alternative is based on the catalytic hydrogenation of NO3 to N2. With this objective, bimetallic RhMo6 catalysts based on Anderson-type heteropolyanion (RhMo6O24H6)3− were prepared and characteri3ed in order to obtain well-defined bimetallic catalyst. The catalysts were supported on Al2O3 with different textural properties and on silica. The heteropolyanion-support interaction was analysed by temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The differences obtained in activity and selectivity to the different products can be assigned to the different interaction between the RhMo6 Anderson phase and the supports. The RhMo6/G, (G: γ-Al2O3) system showed the best catalytic performance. This catalyst exhibited the lowest reduction temperature of Rh and Mo in the TPR assay and a Rh/Mo surface ratio similar to that of the original phase, as observed by XPS analysis. These studies allowed us to verify a synergic effect between Rh and Mo, through which Mo reducibility was promoted by the presence of the noble metal. The catalytic activity was favoured by the active sites generated from the Anderson phase. This fact was confirmed by comparing the activity of RhMo6/G with that corresponding to a conventional catalyst prepared through successive impregnation of both Rh (III) and Mo (VI) salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bae, S., Jung, J., & Lee, W. (2013). The effect of pH and zwitterionic buffers on catalytic nitrate reduction by TiO2-supported bimetallic catalyst. Chemical Engineering Journal, 232, 327–337. https://doi.org/10.1016/j.cej.2013.07.099.

    Article  CAS  Google Scholar 

  • Barrabés, N., & Sá, J. (2011). Catalytic nitrate removal from water, past, present and future perspectives. Applied Catalysis B: Environmental, 104, 1–5. https://doi.org/10.1016/j.apcatb.2011.03.011.

    Article  CAS  Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Ceramic Society, 73, 373–380.

    CAS  Google Scholar 

  • Bertolini, G. R., Cabello, C. I., Muñoz, M., Casella, M., Gazzoli, D., Pettiti, I., & Ferraris, G. (2013). Catalysts based on Rh (III)-hexamolybdate/γ-Al2O3 and their application in the selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Molecular Catalysis A: Chemical, 366, 109–115. https://doi.org/10.1016/j.molcata.2012.09.013.

    Article  CAS  Google Scholar 

  • Bertolini, G. R., Vetere, V., Gallo, M. A., Muñoz, M., Casella, M. L., Gambaro, L., & Cabello, C. I. (2016). Composites based on modified clay assembled Rh (III)–heteropolymolybdates as catalysts in the liquid-phase hydrogenation of cinnamaldehyde. Comptes Rendus Chimie, 19(10), 1174–1183. https://doi.org/10.1016/j.crci.2015.09.015.

    Article  CAS  Google Scholar 

  • Bouras, O. (2003). Doctoral thesis, Université de Limoges, Faculté de Sciences et Techniques, Francia cap. 2.

  • Brunauer S, Emmett PH, Teller E (BET) method. (1985). In J. R. Anderson & K. C. Pratt (Eds.), Introduction to characterization and testing of catalysts. Australia: Academic Press.

  • Cabello, C. I., Botto, I. L., & Thomas, H. J. (1994). Reducibility and thermal behaviour of some Anderson phases. Thermochimica Acta, 232, 183–193. https://doi.org/10.1016/0040-6031(94)80058-8.

    Article  CAS  Google Scholar 

  • Cabello, C. I., Botto, I. L., & Thomas, H. J. (2000). Anderson type heteropolyoxomolybdates in catalysis: 1. (NH4)3[CoMo6O24H6]·7H2O/γ-Al2O3 as alternative of Co-Mo/γ-Al2O3 hydrotreating catalysts. Applied Catalysis A: General, 197, 79–86. https://doi.org/10.1016/S0926-860X(99)00535-9.

    Article  CAS  Google Scholar 

  • Cabello, C. I., Botto, I. L., Muñoz, M., & Thomas, H. (2002). Catalysts based on RhMo6 heteropolymetallates. Bulk and supported preparation and characterization. Studies in Surface Science and Catalysis, 143, 565–573.

    Article  CAS  Google Scholar 

  • Cabello, C. I., Muñoz, M., Botto, I. L., & Payen, E. (2006). The role of Rh on a substituted Al Anderson heteropolymolybdate: thermal and hydrotreating catalytic behaviour. Thermochimia Acta., 447, 22–29.

    Article  CAS  Google Scholar 

  • Choi, E., Park, K., Lee, H., Cho, M., & Ahn, S. (2013). Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media. Journal of Environmental Sciences, 25, 1696–1702. https://doi.org/10.1016/S1001-0742(12)60226-5.

    Article  CAS  Google Scholar 

  • Citak, S., & Sonmez, S. (2010). Effects of conventional and organic fertilization on spinach (Spinacea oleracea L.) growth, yield, vitamin C and nitrate concentration during two successive seasons. Scientia Horticulturae, 126, 415–420. https://doi.org/10.1016/j.scienta.2010.08.010.

    Article  CAS  Google Scholar 

  • Costa, A. O., Ferreira, L. S., Passos, F. B., Maia, M. P., & Peixoto, F. C. (2012). Microkinetic modeling of the hydrogenation of nitrate in water on Pd–Sn/Al2O3 catalyst. Applied Catalysis A: General, 445– 446, 26–34.

    Article  CAS  Google Scholar 

  • Dalmon, J. A., & Martin, G. A. (1980). Hydrogenolysis of C2H6, C3H8 and n-C4H10 over silica-supported nickel-copper catalysts. Journal of Catalysis, 66, 214–221. https://doi.org/10.1016/0021-9517(80)90023-8.

    Article  CAS  Google Scholar 

  • Ding, Y., Sun, W., Yang, W., & Li, Q. (2017). Formic acid as the in-situ hydrogen source for catalytic reduction of nitrate in water by PdAg alloy nanoparticles supported on amine-functionalized SiO2. Applied Catalysis B: Environmental, 203, 372–380. https://doi.org/10.1016/j.apcatb.2016.10.048.

    Article  CAS  Google Scholar 

  • Fierro, J. L. G., Palacios, J. M., & Tomas, F. (1988). An analytical SEM and XPS study of platinum–rhodium gauzes used in high pressure ammonia burners. Surface and Interface Analysis, 13, 25–32. https://doi.org/10.1002/sia.740130107.

    Article  CAS  Google Scholar 

  • Gitzen, W. H. (Ed.). (1970). Alumina as a ceramic material (1st. ed.). Wiley-American Ceramic Society. https://doi.org/10.17226/9575.

  • Gurvitsch, L. (1914). Physicochemical attractive force. Russian Journal of Physical Chemistry, 47, 805–812.

    Google Scholar 

  • Haber, F., Le Rossignol R. (1910). Production of ammonium, US Patent 971501.

  • Harkins, W. D., & Jura, G. (1994). Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Ceramic Society, 66, 1366–1376.

    Google Scholar 

  • Jaworski, M. A., Vetere, V., Bideberripe, H. P., Siri, G., & Casella, M. L. (2013). Structural aspects of PtSn/γ-Al2O3 catalysts prepared through surface-controlled reactions: behavior in the water denitrification reaction. Applied Catalysis A: General, 453, 227–234. https://doi.org/10.1016/j.apcata.2012.12.034.

    Article  CAS  Google Scholar 

  • Kim, K. S., Baitinger, W. E., Amy, J. W., & Winograd, N. (1974). ESCA studies of metal-oxygen surfaces using argon and oxygen ion-bombardment. Journal of Electron Spectroscopy and Related Phenomena, 5, 351–367. https://doi.org/10.1016/0368-2048(74)85023-1.

    Article  CAS  Google Scholar 

  • Kim, Y.-N., Yeob Kim, M., & Choi, M. (2016). Synergistic integration of catalysis and ion-exchange for highly selective reduction of nitrate into N2. Chemical Engineering Journal, 289, 423–432. https://doi.org/10.1016/j.cej.2016.01.002.

    Article  CAS  Google Scholar 

  • Lippens, B. J., & de Boer, J. H. (1965). Studies on pore systems in catalysts: V. The t method. Journal of Catalysis, 4, 319–323. https://doi.org/10.1016/0021-9517(65)90307-6.

    Article  CAS  Google Scholar 

  • Marchesini, F. A., Irusta, S., Querini, C., & Miró, E. (2008). Nitrate hydrogenation over Pt, In/Al2O3 and Pt, In/SiO2. Effect of aqueous media and catalyst surface properties upon the catalytic activity. Catalysis Communications, 9, 1021–1026. https://doi.org/10.1016/j.catcom.2007.09.037.

    Article  CAS  Google Scholar 

  • Marchesini, F. A., Gutierrez, L. B., Querini, C. A., & Miró, E. E. (2010). Pt,In and Pd, In catalysts for the hydrogenation of nitrates and nitrites in water. FTIR characterization and reaction studies. Chemical Engineering Journal, 159, 203–211. https://doi.org/10.1016/j.cej.2010.02.056.

    Article  CAS  Google Scholar 

  • Mizuno, N., & Misono, M. (1998). Heterogeneous catalysis. Chemical Reviews, 98, 199–218. https://doi.org/10.1021/cr960401q.

    Article  CAS  Google Scholar 

  • Pettiti, I., Botto, I. L., Cabello, C. I., Colonna, S., Faticanti, M., Minelli, G., Porta, P., & Thomas, H. J. (2001). Anderson-type heteropolyoxomolybdates in catalysis: 2. EXAFS study on γ-Al2O3-supported Mo, Co and Ni sulfided phases as HDS catalysts. Applied Catalysis A: General, 220, 113–121. https://doi.org/10.1016/S0926-860X(01)00707-4.

    Article  CAS  Google Scholar 

  • Rinaldi, R., Fred, F. Y., & Schuchardt, U. (2006). Structural, morphological and acidic changes of nanocrystalline aluminas caused by a controlled humidity atmosphere. Applied Catalysis A: General, 315, 44–51. https://doi.org/10.1016/j.apcata.2006.08.032.

    Article  CAS  Google Scholar 

  • Soares, O., Órfão, J., Ruiz-Martínez, J., Silvestre-Albero, J., Sepúlveda-Escribano, A., & Pereira, M. F. R. (2010). Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures. Chemical Engineering Journal, 165, 78–88.

    Article  CAS  Google Scholar 

  • Thommes, M., & Cychosz, K. A. (2014). Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption, 20, 233–250. https://doi.org/10.1007/s10450-014-9606-z.

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodríguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051.

    CAS  Google Scholar 

  • Vieira Coelho, A. C., Rocha, G. A., Souza Santos, P., Souza Santos, H., & Kiyohara, P. K. (2008). Specific surface area and structures of aluminas from fibrillar pseudoboehmite. Revista Matéria, 13(2), 329.

    Article  Google Scholar 

  • Vorlop, K.-D., & Tacke, T. (1989). Kinetic investigation of the catalytic nitrate reduction: construction of the test reactor system. Chemie Ingenieur Technik, 61, 836–837. https://doi.org/10.1002/cite.330611023.

    Article  CAS  Google Scholar 

  • Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3, 211–225. https://doi.org/10.1002/sia.740030506.

    Article  CAS  Google Scholar 

  • Zhao, J., & Chen, Q. (2003). Study on enhancement in gibbsite precipitation of Bayer process under 33 kHz ultrasound. Journal of Materials Science and Technology, 19, 607–610.

    Google Scholar 

  • Zoppas, F. M., Marchesini, F. A., Devard, A., Bernardes, A. M., & Miró, E. E. (2016). Controlled deposition of Pd and In on carbon fibers by sequential electroless plating for the catalytic reduction of nitrate in water. Catalysis Communications, 78, 59–63. https://doi.org/10.1016/j.catcom.2016.02.012.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mrs. Graciela Valle, Eng. Edgardo Soto, Lic. Mariela Theiller, Dra. Laura Barbelli and Eng. Hernán Bideberripe for their contribution and technical support.

Funding

This study received financial support from the following institutions: CONICET (PIP 0276 and 0003), ANPCyT (PICT 0409) and UNLP (Subsidio Jóvenes Investigadores, Subsidio de Viajes) and Projects I172, X633 y X700; and CICPBA (Project 832/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María A. Jaworski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaworski, M.A., Bertolini, G.R., Cabello, C.I. et al. Use of Rh (III)-Heteropolymolybdate as Potential Catalysts for the Removal of Nitrates in Human Drinking Water: Synthesis, Characterisation and Catalytic Performance. Water Air Soil Pollut 229, 309 (2018). https://doi.org/10.1007/s11270-018-3962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3962-3

Keywords

Navigation