Skip to main content
Log in

Brassica napus Growth in Lead-Polluted Soil: Bioaccumulation in Plant Organs at Different Ontogenetic Stages and Lead Fractionation in Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Lead is known to be a highly toxic metal; it is often found in soils with the potential to be incorporated by plants. Here, the bioaccumulation of lead by rapeseed (Brassica napus) from a soil with Pb(II) added just before sowing is studied. The effect on plant organs is also studied at the ontogenetic stages of flowering and physiological maturity. Moreover, the chemical fractionation of Pb in the rhizosphere and bulk soil portions is investigated and related to Pb accumulation in plant organs. B. napus are found to accumulate Pb in its organs: 1.5–19.6 mg kg−1 in roots, 3.3–15.6 mg kg−1 in stems, 0.5–8.6 mg kg−1 in leaves in all treatments, and in grains 1.45 mg kg−1 at physiological maturity and only for the highest Pb dose (200 mg kg−1). Plant biomass reduction was observed to be about 20% at the flowering stage and only for the highest Pb dose. The analysis of metal fractionation in soil shows Pb migration from the bulk soil to the rhizosphere, attributed to concentration gradients created by root intake. Along the time period studied, lead chemical fractionation in soil evolved toward the most stable fractions, which coupled to plant uptake depleted the soluble/exchangeable one (assumed bioavailable).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, N., Carroll, D., Madalinski, K., Rock, S., Wilson, T., & Pivetz, B. (2000). Introduction to phytoremediation. Cincinnati: USEPA.

    Google Scholar 

  • Arrouays, D., Mench, M., Gomez, A., & Amans, V. (1996). Short-range variability of fallout Pb in a contaminated soil. Canadian Journal of Soil Science, 76(1), 73–81. https://doi.org/10.4141/cjss96-011.

    Article  CAS  Google Scholar 

  • Azimzadeh, Y., Shirvani, M., & Shariatmadari, H. (2014). Green manure and overlapped rhizosphere effects on Pb chemical forms in soil and plant uptake in maize/canola intercrop systems: a Rhizobox study. Soil and Sediment Contamination: An International Journal, 23(6), 677–690. https://doi.org/10.1080/15320383.2014.861795.

    Article  CAS  Google Scholar 

  • Bharagava, R. N., Chandra, R., & Rai, V. (2008). Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grown in post methanated distillery effluent (PMDE) irrigated soil. Bioresource Technology, 99(17), 8316–8324. https://doi.org/10.1016/j.biortech.2008.03.002.

    Article  CAS  Google Scholar 

  • Bilal Shakoor, M., Ali, S., Hameed, A., Farid, M., Hussain, S., Yasmeen, T., et al. (2014). Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicology and Environmental Safety, 109, 38–47. https://doi.org/10.1016/j.ecoenv.2014.07.033.

    Article  CAS  Google Scholar 

  • Brunetti, G., Farrag, K., Rovira, P. S., Nigro, F., & Senesi, N. (2011). Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160(3), 517–523.

    Article  CAS  Google Scholar 

  • Cartier, C., Doré, E., Laroche, L., Nour, S., Edwards, M., & Prévost, M. (2013). Impact of treatment on Pb release from full and partially replaced harvested lead service lines (LSLs). Water Research, 47(2), 661–671. https://doi.org/10.1016/j.watres.2012.10.033.

    Article  CAS  Google Scholar 

  • Ferreyra, H., Romano, M., & Uhart, M. (2009). Recent and chronic exposure of wild ducks to lead in human-modified wetlands in Santa Fe Province, Argentina. Journal of Wildlife Diseases, 45(3), 823–827.

    Article  Google Scholar 

  • Ferreyroa, G. V., Montenegro, A. C., Tudino, M. B., Lavado, R. S., & Molina, F. V. (2014). Time evolution of Pb(II) speciation in pampa soil fractions. Chemical Speciation and Bioavailability, 26(4), 210–218.

    Article  CAS  Google Scholar 

  • Ferreyroa, G. V., Lagorio, M. G., Trinelli, M. A., Lavado, R. S., & Molina, F. V. (2017). Lead effects on brassica napus photosynthetic organs. Ecotoxicology and Environmental Safety, 140, 123–130. https://doi.org/10.1016/j.ecoenv.2017.02.031.

    Article  CAS  Google Scholar 

  • Gonzalez, J., Cruzate, G. G., & Panigatti, J. L. (2013). Suelos de la costa NE del Río Paraná (prov. de Bs. As.) (1a.). San Pedro, pcia. Bs. As., Argentina: INTA ediciones.

  • Hass, A., & Fine, P. (2010). Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials—a critical review. Critical Reviews in Environmental Science and Technology, 40(5), 365–399. https://doi.org/10.1080/10643380802377992.

    Article  CAS  Google Scholar 

  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes: a research review. New Phytologist, 168(2), 293–303. https://doi.org/10.1111/j.1469-8137.2005.01512.x.

    Article  CAS  Google Scholar 

  • Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W., & Stingeder, G. J. (2004). Determination of trace elements bound to soils and sediment fractions: (IUPAC Technical Report). Pure and Applied Chemistry, 76(2), 415–442.

    Article  CAS  Google Scholar 

  • Karak, T., Bhattacharyya, P., Kumar Paul, R., & Das, D. K. (2013). Metal accumulation, biochemical response, and yield of Indian mustard grown in soil amended with rural roadside pond sediment. Ecotoxicology and Environmental Safety, 92, 161–173. https://doi.org/10.1016/j.ecoenv.2013.03.019.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Chen, B., & Zhu, Y.-G. (2006). Humic acids increase the phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked, contaminated soil (7 pp). Journal of Soils and Sediments, 6(4), 236–242. https://doi.org/10.1065/jss2006.08.178.

    Article  CAS  Google Scholar 

  • Kim, K.-R., Owens, G., & Kwon, S. (2010). Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study. Journal of Environmental Sciences, 22(1), 98–105. https://doi.org/10.1016/S1001-0742(09)60080-2.

    Article  CAS  Google Scholar 

  • Lavado, R. S., Rodríguez, M. S., Scheiner, J. D., Taboada, M. A., Rubio, G., Alvarez, R., et al. (1998). Heavy metals in soils of Argentina: comparison between urban and agricultural soils. Communications in Soil Science and Plant Analysis, 29(11–14), 1913–1917.

    Article  CAS  Google Scholar 

  • Lavado, R. S., Zubillaga, M. S., Alvarez, R., & Taboada, M. A. (2004). Baseline levels of potentially toxic elements in pampas soils. Soil and Sediment Contamination: An International Journal, 13(5), 329–339. https://doi.org/10.1080/10588330490500383.

    Article  CAS  Google Scholar 

  • Lavado, R. S., Rodríguez, M., Alvarez, R., Taboada, M. A., & Zubillaga, M. S. (2007). Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops. Agriculture. Ecosystems and Environment, 118(1–4), 312–318. https://doi.org/10.1016/j.agee.2006.06.001.

    Article  CAS  Google Scholar 

  • Liu, D., Jiang, W., Liu, C., Xin, C., & Hou, W. (2000). Uptake and accumulation of lead by roots, hypocotyls, and shoots of Indian mustard [Brassica juncea (L.)]. Bioresource Technology, 71(3), 273–277.

    Article  CAS  Google Scholar 

  • Ma, Y. B., & Uren, N. C. (1998). Transformations of heavy metals added to the soil—application of a new sequential extraction procedure. Geoderma, 84(1–3), 157–168. https://doi.org/10.1016/S0016-7061(97)00126-2.

    Article  CAS  Google Scholar 

  • Magrisso, S., Belkin, S., & Erel, Y. (2009). Lead bioavailability in soil and soil components. Water, Air, and Soil Pollution, 202(1–4), 315–323. https://doi.org/10.1007/s11270-009-9978-y.

    Article  CAS  Google Scholar 

  • McBride, M. B., Shayler, H. A., Russell-Anelli, J. M., Spliethoff, H. M., & Marquez-Bravo, L. G. (2015). Arsenic and lead uptake by vegetable crops grown on an old orchard site amended with compost. Water, Air, and Soil Pollution, 226(8), 1–10. https://doi.org/10.1007/s11270-015-2529-9.

    Article  CAS  Google Scholar 

  • Miralles, D. J., Windauer, L. B., & Gómez, N. V. (2003). Factores que regulan el desarrollo de los cultivos de granos. In E. H. Satorre, R. L. Benech Arnold, G. A. Slafer, E. B. de la Fuente, D. J. Miralles, M. E. Otegui, & R. Savin (Eds.), Producción de Granos. Bases Funcionales para su Manejo. Buenos Aires: Editorial Facultad de Agronomía.

    Google Scholar 

  • Molina, F. V. (2013). Soil colloids: Properties and ion binding. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Needleman, H. (2004). Lead poisoning. Annual Review of Medicine, 55(1), 209–222. https://doi.org/10.1146/annurev.med.55.091902.103653.

    Article  CAS  Google Scholar 

  • Rodriguez, J. H., Salazar, M. J., Steffan, L., Pignata, M. L., Franzaring, J., Klumpp, A., & Fangmeier, A. (2014). Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina. Journal of Geochemical Exploration, 145, 129–134. https://doi.org/10.1016/j.gexplo.2014.05.025.

    Article  CAS  Google Scholar 

  • Salazar, M. J., Rodriguez, J. H., Nieto, G. L., & Pignata, M. L. (2012). Effects of heavy metal concentrations (Cd, Zn, and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. Journal of Hazardous Materials, 233–234, 244–253. https://doi.org/10.1016/j.jhazmat.2012.07.026.

    Article  CAS  Google Scholar 

  • Salazar, M. J., Rodriguez, J. H., Cid, C. V., & Pignata, M. L. (2016). Auxin effects on Pb phytoextraction from polluted soils by Tegetes minuta L. and Bidens pilosa L.: the extractive power of their root exudates. Journal of Hazardous Materials, 311, 63–69. https://doi.org/10.1016/j.jhazmat.2016.02.053.

    Article  CAS  Google Scholar 

  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation to metal speciation; the role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219–220, 1–12. https://doi.org/10.1016/j.jhazmat.2012.01.060.

    Article  CAS  Google Scholar 

  • Shrivastava, S. K., & Banerjee, D. K. (2004). Speciation of metals in sewage sludge and sludge-amended soils. Water, Air, and Soil Pollution, 152(1–4), 219–232. https://doi.org/10.1023/B:WATE.0000015364.19974.36.

    Article  CAS  Google Scholar 

  • Silva Gonzaga, M. I., Santos, J. A. G., & Ma, L. Q. (2006). Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environmental Pollution, 143(2), 254–260. https://doi.org/10.1016/j.envpol.2005.11.037.

    Article  CAS  Google Scholar 

  • Slafer, G. A. (Ed.). (1993). Genetic improvement of field crops. New York: CRC Press.

    Google Scholar 

  • Smolders, E., Oorts, K., Peeters, S., Lanno, R., & Cheyns, K. (2015). Toxicity in lead salt spiked soils to plants, invertebrates, and microbial processes: unraveling effects of acidification, salt stress, and aging reactions. Science of the Total Environment, 536, 223–231. https://doi.org/10.1016/j.scitotenv.2015.07.067.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2002). Environmental soil chemistry (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 475–490). Madison: American Society of Agronomy-Soil Science Society of America.

    Google Scholar 

  • Tu, C., Ma, L. Q., & Bondada, B. (2002). Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environment Quality, 31(5), 1671. https://doi.org/10.2134/jeq2002.1671.

    Article  CAS  Google Scholar 

  • Wang, Z., Shan, X., & Zhang, S. (2002). Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46(8), 1163–1171. https://doi.org/10.1016/S0045-6535(01)00206-5.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142(1), 1–16. https://doi.org/10.1016/j.envpol.2005.09.004.

    Article  CAS  Google Scholar 

  • Wright, R. J., & Stuczynski, T. (1996). Atomic absorption and flame emission spectrometry. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 65–90). Madison: American Society of Agronomy-Soil Science Society of America.

    Google Scholar 

  • Yang, J., Hu, S., Chen, X., Yu, M., Liu, J., Li, H., et al. (2010). Transformation of lead solid fraction in the rhizosphere of Elsholtzia splendens: the importance of organic matter. Water, Air, and Soil Pollution, 205(1–4), 333–342. https://doi.org/10.1007/s11270-009-0077-x.

    Article  CAS  Google Scholar 

  • Youssef, R. A., & Chino, M. (1989). Root-induced changes in the rhizosphere of plants. I. pH changes in relation to the bulk soil. Soil Science and Plant Nutrition, 35(3), 461–468. https://doi.org/10.1080/00380768.1989.10434779.

    Article  Google Scholar 

  • Yu, R., Ji, J., Yuan, X., Song, Y., & Wang, C. (2012). Accumulation and translocation of heavy metals in the canola (Brassica napus L.)—soil system in Yangtze River Delta, China. Plant and Soil, 1–13.

  • Zanetti, F., Monti, A., & Berti, M. T. (2013). Challenges and opportunities for new industrial oilseed crops in EU-27: a review. Industrial Crops and Products, 50, 580–595. https://doi.org/10.1016/j.indcrop.2013.08.030.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Universidad de Buenos Aires, Argentina (grant 20020130100035BA), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, grant PIP F57269), and the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (grant PICT 2014-2289). The authors are indebted to Dr. M. A. Trinelli and Dr. N. Verrengia Guerrero for help with the analytical determinations. M. B. T., R. S. L., and F. V. M. are members of the Carrera del Investigador Científico of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando V. Molina.

Electronic Supplementary Material

ESM 1

(PDF 751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreyroa, G.V., Gelma, J., Sosa, M.D. et al. Brassica napus Growth in Lead-Polluted Soil: Bioaccumulation in Plant Organs at Different Ontogenetic Stages and Lead Fractionation in Soil. Water Air Soil Pollut 229, 213 (2018). https://doi.org/10.1007/s11270-018-3851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3851-9

Keywords

Navigation