Skip to main content

Advertisement

Log in

Investigation on Problems of Wastewater from Hydraulic Fracturing and Their Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The global energy landscape has significantly changed in the past several years because horizontal drilling and hydraulic fracturing enable unconventional oil and gas extraction from previously inaccessible shale formations. However, opportunities and challenges coexist. Large volumes of freshwater consumed and wastewater discharge increasingly affect the environment and ecosystem. Much freshwater is pumped into deep formations during hydraulic fracturing process, and flowback with high-salinity brines, producing large volumes of wastewater. Such wastewater contains not only many toxic chemicals and high levels of total dissolved solids, but also abundant stratigraphic minerals and radioactive substances, which may pose a serious risk to the surrounding environment and public health. One of the greatest challenges for current oil and gas extraction is handling those wastewaters in a reasonable and efficient way. This paper described the current methods for dealing with these challenges and put forward some suggestions and expectations for future management of water resources in hydraulic fracturing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abualfaraj, N., Gurian, P. L., & Olson, M. S. (2014). Characterization of marcellus shale flowback water. Environmental Engineering Science, 31(9), 514–524.

    Article  CAS  Google Scholar 

  • Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., & Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chemical Engineering Journal, 260(260), 749–756.

    Article  CAS  Google Scholar 

  • Balashov, V. N., Engelder, T., Xin, G., Fantle, M. S., & Brantley, S. L. (2015). A model describing flowback chemistry changes with time after marcellus shale hydraulic fracturing. AAPG Bulletin, 99(1), 143–154.

    Article  Google Scholar 

  • Bartoszewicz, M., Michalska, M., Cieszyńska-Semenowicz, M., Czernych, R., & Wolska, L. (2016). The problem of wastewater in shale gas exploitation the influence of fracturing flowback water on activated sludge at a wastewater treatment plant. Polish Journal of Environmental Studies, 25(5), 1839–1845.

    Article  CAS  Google Scholar 

  • Benko, K. L., & Drewes, J. E. (2008). Produced water in the Western United States: geographical distribution, occurrence, and composition. Environmental Engineering Science, 25(2), 239–246.

    Article  CAS  Google Scholar 

  • Blewett, T. A., Delompre, P. L., He, Y., Folkerts, E. J., Flynn, S. L., & Alessi, D. S. (2017). The sub-lethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea daphnia magna. Environmental Science & Technology, 51(5), 3032–3039.

    Article  CAS  Google Scholar 

  • Blondes, M. S., Gans, K. D., Engle, M. A., Kharaka, Y. K., Reidy, M. E., Saraswathula, V., Thordsen, J. J., Rowan, E. L., & Morrissey, E. A. (2018). The national produced waters geochemical database and map viewer. Reston, VA: United States Geological Survey, U.S. Department of the Interior, U.S. Geological Survey, Office of Communications and Publishing.

    Google Scholar 

  • Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831−849.

    Article  CAS  Google Scholar 

  • Chao, M., Liangwei, X., & Yonghong, C. (2013). Application of Fenton reagent in treatment of flowback fracturing fluid. Environmental protection of oil and gas fields, 3, 16–18.

    Google Scholar 

  • Chen, H., & Carter, K. E. (2016). Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014. Journal of Environmental Management, 170, 152–159.

    Article  Google Scholar 

  • Chen, S. S., Sun, Y., Tsang, D. C., Graham, N. J., Ok, Y. S., & Feng, Y. (2017). Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: metal/metalloid bioaccessibility, microtox bioassay, and enzyme activities. Science of the Total Environment, 579, 1419–1426.

    Article  CAS  Google Scholar 

  • Cheryan, M., & Rajagopalan, N. (1998). Membrane processing of oily streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 151(1), 13–28.

    Article  CAS  Google Scholar 

  • Cho, H., Jang, Y., Koo, J., Choi, Y., Lee, S., & Sohn, J. (2016). Effect of pretreatment on fouling propensity of shale gas wastewater in membrane distillation process. Desalination and Water Treatment, 57(51), 24566–24573.

    Article  CAS  Google Scholar 

  • Cluff, M. A., Hartsock, A., Macrae, J. D., Carter, K., & Mouser, P. J. (2014). Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured marcellus shale gas wells. Environmental Science & Technology, 48(11), 6508–6517.

    Article  CAS  Google Scholar 

  • Coday, B. D., Almaraz, N., & Cath, T. Y. (2015). Forward osmosis desalination of oil and gas wastewater: impacts of membrane selection and operating conditions on process performance. Journal of Membrane Science, 488, 40–55.

    Article  CAS  Google Scholar 

  • Collins, A. G. (1969). Chemistry of some Anadarko brines containing high concentrations of iodine. Chemical Geology, 4(1–2), 169–187.

    Article  CAS  Google Scholar 

  • Collins, A. G. (1975). Geochemistry of oilfield waters (p. p496). New York: Elsevier Scientific Publication.

    Google Scholar 

  • Esmaeilirad, N., Carlson, K., & Omur, O. P. (2015). Influence of softening sequencing on electrocoagulation treatment of produced water. Journal of Hazardous Materials, 283, 721–729.

    Article  CAS  Google Scholar 

  • Esmaeilirad, N., Terry, C., Kennedy, H., Prior, A., & Carlson, K. (2016). Recycling fracturing flowback water for use in hydraulic fracturing: influence of organic matter on stability of carboxyl-methyl-cellulose-based fracturing fluids. SPE Journal, 21(04), 1–358.

    Article  Google Scholar 

  • Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2), 530–551.

    Article  CAS  Google Scholar 

  • Farag, A. M., & Harper, D. D. (2013). A review of environmental impacts of salts from produced waters on aquatic resources. International Journal of Coal Geology, 126(5), 157–161.

    Google Scholar 

  • Ferrer, I., & Thurman, E. M. (2015). Chemical constituents and analytical approaches for hydraulic fracturing waters. Trends in Environmental Analytical Chemistry, 5, 18–25.

    Article  CAS  Google Scholar 

  • Gordalla, B. C., Ewers, U., & Frimmel, F. H. (2013). Hydraulic fracturing: a toxicological threat for groundwater and drinking-water. Environmental Earth Sciences, 70(8), 3875–3893.

    Article  CAS  Google Scholar 

  • Goss, G., Alessi, D., Allen, D., Gehman, J., Brisbois, J., & Kletke, S. (2016). Unconventional wastewater management: a comparative review and analysis of hydraulic fracturing wastewater management practices across four north american basins. International Journal of Nursing Studies, 50(2), 230–239.

    Google Scholar 

  • Gregory, K. B., Vidic, R. D., & Dzombak, D. A. (2010). Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements, 7(3), 181–186.

    Article  Google Scholar 

  • Haghshenas, A., & Nasr-El-Din, H. A. (2014). Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. Journal of Natural Gas Science & Engineering, 21, 316–325.

    Article  CAS  Google Scholar 

  • Haluszczak, L. O., Rose, A. W., & Kump, L. R. (2013). Geochemical evaluation of flowback brine from marcellus gas wells in Pennsylvania, USA. Applied Geochemistry, 28(3), 55–61.

    Article  CAS  Google Scholar 

  • Hamdan, S. S., & El-Naas, M. H. (2014). An electrocoagulation column (ecc) for groundwater purification. Journal of Water Process Engineering, 4, 25–30.

    Article  Google Scholar 

  • Harkness, J. S., Dwyer, G. S., Warner, N. R., Parker, K. M., Mitch, W. A., & Vengosh, A. (2015). Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications. Environmental Science & Technology, 49(3), 1955–1963.

    Article  CAS  Google Scholar 

  • He, Y., Folkerts, E. J., Zhang, Y., Martin, J. W., Alessi, D. S., & Goss, G. G. (2016a). Effects on biotransformation, oxidative stress and endocrine disruption in rainbow trout (oncorhynchus mykiss) exposed to hydraulic fracturing flowback and produced water. Environmental Science & Technology, 51(2), 940–947.

    Article  CAS  Google Scholar 

  • He, C., Zhang, T., & Vidic, R. D. (2016b). Co-treatment of abandoned mine drainage and marcellus shale flowback water for use in hydraulic fracturing. Water Research, 104, 425–431.

    Article  CAS  Google Scholar 

  • He, Y., Flynn, S. L., Folkerts, E. J., Zhang, Y., Ruan, D., Alessi, D. S., et al. (2017). Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. Water Research, 114, 78–87.

    Article  CAS  Google Scholar 

  • Hietala, J., Laurén-Määttä, C., & Walls, M. (1997). Sensitivity of Daphnia to toxic cyanobacteria: effects of genotype and temperature. Freshwater Biology, 37(2), 299–306.

    Article  Google Scholar 

  • Jiang, M., Hendrickson, C. T., & Vanbriesen, J. M. (2014). Life cycle water consumption and wastewater generation impacts of a marcellus shale gas well. Environmental Science & Technology, 48(3), 1911–1920.

    Article  CAS  Google Scholar 

  • Jones, D. B., Saglam, A., Song, H. C., & Karanfil, T. (2012). The impact of bromide/iodide concentration and ratio on iodinated trihalo-methane formation and speciation. Water Research, 46(1), 11–20.

    Article  CAS  Google Scholar 

  • Kahrilas, G. A., Blotevogel, J., Corrin, E. R., & Borch, T. (2016). Downhole transformation of the hydraulic fracturing fluid biocide glutaraldehyde: implications for flowback and produced water quality. Environmental Science & Technology, 50(20), 11414–11423.

    Article  CAS  Google Scholar 

  • Karahan, S., Yurdakoç, M., Seki, Y., & Yurdakoç, K. (2006). Removal of boron from aqueous solution by clays and modified clays. Journal of Colloid and Interface Science, 293(1), 36–42.

    Article  CAS  Google Scholar 

  • Kargbo, D. M., Wilhelm, R. G., & Campbell, D. J. (2010). Natural gas plays in the Marcellus shale: challenges and potential opportunities. Environmental Science & Technology, 44, 5679–5684.

    Article  CAS  Google Scholar 

  • Kim, Y. C., Lee, S., Park, S. J., & Kim, H. S. (2016). Performance analysis of plate-and-frame forward osmosis membrane module for concentrating high salinity wastewater. The KSFM Journal of Fluid Machinery, 19(6), 68–74.

    Article  Google Scholar 

  • Kondash, A. J., Warner, N. R., Lahav, O., & Vengosh, A. (2014). Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Environmental Science & Technology, 48(2), 1334–1342.

    Article  CAS  Google Scholar 

  • Latta, S. C., Marshall, L. C., Frantz, M. W., & Toms, J. D. (2015). Evidence from two shale regions that a riparian songbird accumulates metals associated with hydraulic fracturing. Ecosphere, 6(9), 1–10.

    Article  Google Scholar 

  • Leong, Y., Frank, O., & Stolz, J. F. (2015). Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering, 50(5), 511–515.

    Article  CAS  Google Scholar 

  • Lester, Y., Yacob, T., Morrissey, I., & Linden, K. G. (2013). Can we treat hydraulic fracturing flowback with a conventional biological process? The case of guar gum. Environmental Science & Technology Letters, 1(1), 133–136.

    Article  CAS  Google Scholar 

  • Lira-Barragán, L. F., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2016). Optimal reuse of flowback wastewater in hydraulic fracturing including seasonal and environmental constraints. AICHE Journal, 62(5), 1634–1645.

    Article  CAS  Google Scholar 

  • Lobo, F. L., Wang, H., Huggins, T., Rosenblum, J., Linden, K. G., & Ren, Z. J. (2016). Low-energy hydraulic fracturing wastewater treatment via ac powered electrocoagulation with biochar. Journal of Hazardous Materials, 309, 180–184.

    Article  CAS  Google Scholar 

  • Maguire-Boyle, S. J., & Barron, A. R. (2014). Organic compounds in produced waters from shale gas wells. Environmental Science Processes & Impacts, 16(10), 2237–2248.

    Article  CAS  Google Scholar 

  • Mauter, M. S., & Palmer, V. R. (2014). Expert elicitation of trends in Marcellus oil and gas wastewater management. Journal of Environmental Engineering, 140(5), B4014004.

    Article  CAS  Google Scholar 

  • Maxwell, S. L., Culligan, B. K., Warren, R. A., & Mcalister, D. R. (2016). Rapid method for the determination of 226 Ra in hydraulic fracturing wastewater samples. Journal of Radioanalytical and Nuclear Chemistry, 309(3), 1333–1340.

    Article  CAS  Google Scholar 

  • Mcgovern, R. K., Mizerak, J. P., Zubair, S. M., & John, H. L. V. (2014). Three dimensionless parameters influencing the optimal membrane orientation for forward osmosis. Journal of Membrane Science, 458(458), 104–110.

    Article  CAS  Google Scholar 

  • Millar, G. J., Lin, J., Arshad, A., & Couperthwaite, S. J. (2014). Evaluation of electrocoagulation for the pre-treatment of coal seam water. Journal of Urology, 4(1), 166–178.

    Google Scholar 

  • Miller, D. J., Huang, X., Li, H., Kasemset, S., Lee, A., Agnihotri, D., et al. (2013). Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: a pilot study. Journal of Membrane Science, 437(12), 265–275.

    Article  CAS  Google Scholar 

  • Mimouni, A., Kuzmyak, N., Oort, E. V., Sharma, M., & Katz, L. (2015). Compatibility of hydraulic fracturing additives with high salt concentrations for flowback water reuse (pp 496–509). World Environmental and Water Resources Congress. https://doi.org/10.1061/9780784479162.045

  • Muhammad, R. B. (2016). Module-scale simulation of forward osmosis module—part A: plate-and-frame. Indonesian Journal of Science and Technology, 1(2), 249–261.

    Article  Google Scholar 

  • Murali Mohan, A., Hartsock, A., Hammack, R. W., Vidic, R. D., & Gregory, K. B. (2013). Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas. FEMS Microbiology Ecology, 86(3), 567–580.

    Article  CAS  Google Scholar 

  • Nelson, A. W., May, D., Knight, A. W., Eitrheim, E. S., Mehrhoff, M., Shannon, R., et al. (2014). Matrix complications in the determination of radium levels in hydraulic fracturing flowback water from marcellus shale. Environmental Science & Technology Letters, 1, 204–208.

    Article  CAS  Google Scholar 

  • Oikonomou, P. D., Kallenberger, J. A., Waskom, R. M., Boone, K. K., Plombon, E. N., & Ryan, J. N. (2016). Water acquisition and use during unconventional oil and gas development and the existing data challenges: weld and Garfield counties. Journal of Environmental Management, 181, 36–47.

    Article  Google Scholar 

  • Papso, J., Blauch, M., & Grottenthaler, D. (2010). Cabot gas well treated with 100% reused frac fluid. Indiana, PA: Superior Well Services. https://www.epmag.com/gas-well-treated-100-reused-frac-fluid-647446. Accessed 2 March 2018.

  • Riley, S. M., Oliveira, J. M. S., Regnery, J., & Cath, T. Y. (2016). Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water. Separation & Purification Technology, 171, 297–311.

    Article  CAS  Google Scholar 

  • Sari, M. A., & Chellam, S. (2015). Mechanisms of boron removal from hydraulic fracturing wastewater by aluminum electrocoagulation. Journal of Colloid & Interface Science, 458, 103–111.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Reedy, R. C., & Nicot, J. P. (2014). Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays. Environmental Research Letters, 9(12), 124011.

    Article  Google Scholar 

  • Scanlon, B. R., Reedy, R. C., Male, F., & Hove, M. (2016). Managing the increasing water footprint of hydraulic fracturing in the bakken play, United States. Environmental Science & Technology, 50(18), 10273–10281.

    Article  CAS  Google Scholar 

  • Seales, M. B., Dilmore, R., Ertekin, T., & Wang, J. Y. (2016). Numerical analysis of the source of excessive Na+ and Cl species in flowback water from hydraulically fractured shale formations. SPE Journal, 21(5), 1477–1490.

    Article  CAS  Google Scholar 

  • Shaffer, D. L., Arias Chavez, L. H., Ben-Sasson, M., Romero-Vargas Castrillón, S., Yip, N. Y., & Elimelech, M. (2013). Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environmental Science & Technology, 47(17), 9569–9583.

    Article  CAS  Google Scholar 

  • Shrestha, N., Chilkoor, G., Wilder, J., Gadhamshetty, V., & Stone, J. J. (2016). Potential water resource impacts of hydraulic fracturing from unconventional oil production in the bakken shale. Water Research, 108, 1–24.

    Article  CAS  Google Scholar 

  • Sun, M., Lowry, G. V., & Gregory, K. B. (2013). Selective oxidation of bromide in wastewater brines from hydraulic fracturing. Water Research, 47(11), 3723–3731.

    Article  CAS  Google Scholar 

  • Sun, Y., Chen, S. S., Tsang, D. C. W., Graham, N. J. D., Yong, S. O., Feng, Y., et al. (2017). Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing. Chemosphere, 167, 163–170.

    Article  CAS  Google Scholar 

  • Tasker, T. L., Piotrowski, P. K., Dorman, F. L., & Burgos, W. D. (2016). Metal associations in marcellus shale and fate of synthetic hydraulic fracturing fluids reacted at high pressure and temperature. Environmental Engineering Science, 33(10), 753–765.

    Article  CAS  Google Scholar 

  • Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2013). Removal of boron species by layered double hydroxides: a review. Journal of Colloid and Interface Science, 402, 114–121.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2015). Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft). Washington, DC: U.S. Environmental Protection Agency EPA/600/R-15/047.

    Google Scholar 

  • Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J., Jr (2014) A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. United States. https://doi.org/10.2172/821666.

  • Vengosh, A., Warner, N. R., Kondash, A., Harkness, J. S., Lauer, N., Millot, R., et al. (2015). Isotopic fingerprints for delineating the environmental effects of hydraulic fracturing fluids. Procedia Earth & Planetary Science, 13, 244–247.

    Article  CAS  Google Scholar 

  • Vidic, R., & Barbot, E. (2011). Potential for the use of abandoned mine drainage for hydrofracturing in Marcellus Shale. Abstracts with Programs - Geological Society of America, 43(1), 75.

  • Warner, N. R., Christie, C. A., Jackson, R. B., & Vengosh, A. (2013). Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environmental Science & Technology, 47(20), 11849–11857.

    Article  CAS  Google Scholar 

  • Weaver, J. W., Xu, J., & Mravik, S. C. (2016). Scenario analysis of the impact on drinking water intakes from bromide in the discharge of treated oil and gas wastewater. Journal of Environmental Engineering, 142(1), 04015050.

    Article  CAS  Google Scholar 

  • Wu, Q. Y., Hu, H. Y., Zhao, X., & Li, Y. (2010). Effects of chlorination on the properties of dissolved organic matter and its genotoxicity in secondary sewage effluent under two different ammonium concentrations. Chemosphere, 80(8), 941–946.

    Article  CAS  Google Scholar 

  • Xiong, B., Zydney, A. L., & Kumar, M. (2016). Fouling of microfiltration membranes by flowback and produced waters from the marcellus shale gas play. Water Research, 99, 162.

    Article  CAS  Google Scholar 

  • Xu, Y., & Jiang, J. Q. (2008). Technologies for boron removal. Industrial & Engineering Chemistry Research, 47(1), 16–24.

    Article  CAS  Google Scholar 

  • Yang, X., & Shang, C. (2004). Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide. Environmental Science & Technology, 38(19), 4995–5001.

    Article  CAS  Google Scholar 

  • Yost, E. E., Stanek, J., Dewoskin, R. S., & Burgoon, L. D. (2016). Estimating the potential toxicity of chemicals associated with hydraulic fracturing operations using quantitative structure-activity relationship modeling. Environmental Science & Technology, 50(14), 7732–7742.

    Article  CAS  Google Scholar 

  • Zhang, T., Hammack, R. W., & Vidic, R. D. (2015). Fate of radium in marcellus shale flowback water impoundments and assessment of associated health risks. Environmental Science & Technology, 49(15), 9347–9354.

    Article  CAS  Google Scholar 

  • Zhang, X., Sun, A. Y., & Duncan, I. J. (2016). Shale gas wastewater management under uncertainty. Journal of Environmental Management, 165, 188–198.

    Article  CAS  Google Scholar 

Download references

Funding

The research is partly supported by Excellent Young Scientists fund in Sichuan Province (2017JQ0010), National High Technology Research and Development Program (2016ZX05053), Key Fund Project of Educational Commission of Sichuan Province (16CZ0008), and Explorative Project Fund (G201601) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincheng Mao or Xiaojiang Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Zhang, C., Yang, X. et al. Investigation on Problems of Wastewater from Hydraulic Fracturing and Their Solutions. Water Air Soil Pollut 229, 246 (2018). https://doi.org/10.1007/s11270-018-3847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3847-5

Keywords

Navigation