Skip to main content
Log in

The Dependence of the Soil Microwave Attenuation on Frequency and Water Content in Different Types of Vegetation: an Empirical Model

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A layer of vegetation above the surface of the soil absorbs the microwave radiation emitted by the soil and some objects under the vegetation canopy. This paper explores the microwave propagation process within the vegetation layer and evaluates the respective attenuation coefficients. For this purpose, an experimental laboratory test bench is constructed which is based on the special rectangular camera-waveguide with the transmission and reception of broadband antennas. This allows the study of the dependence of the attenuation coefficient on the 0.8–10 GHz frequency range and the water content in different types of vegetation. Evaluations of attenuation coefficients are achieved on a wide range of frequencies for deciduous and coniferous forests, which separate the branches and trunks as canopy fragments. These experimental results are important because they can fulfill the requirement for verification and validation of existing theoretical models that describe the attenuation effect of microwave propagation in vegetation canopy. In addition, the development of a simple empirical model based on the results obtained can give a brief indication of their importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achard, F., & Hansen, M. C. (Eds.). (2012). Global forest monitoring from earth observation (p. 354). London: CRC Press.

    Google Scholar 

  • Aires, F., Prigent, C., & Rossow, W. B. (2005). Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships. Journal of Geophysical Research, 110(1–14), D11103. https://doi.org/10.1029/2004JD005094.

    Article  Google Scholar 

  • Cernicharo, J., Verger, A., & Camacho, F. (2013). Empirical and physical estimation of canopy water content from CHRIS/PROBA data. Remote Sensing, 5, 5265–5284.

    Article  Google Scholar 

  • Chiu, T., & Sarabandi, K. (2000). Electromagnetic scattering from short branching vegetation. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 911–925.

    Article  Google Scholar 

  • Chukhlantsev, A. A. (2006). Microwave radiometry of vegetation canopies (p. 287). Berlin: Springer.

    Google Scholar 

  • Chukhlantsev A.A., Shutko A.M., & Golovachev S.P. (2003). Attenuation of electromagnetic waves by vegetation canopies in the 100–1000 MHz frequency band. ISTC/IRE Technical Report, #2059–1, 59 pp.

  • Cracknell, A. P., & Varotsos, C. A. (1994). Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. International Journal of Remote Sensing, 15(13), 2659–2668.

    Article  Google Scholar 

  • Cracknell, A. P., & Varotsos, C. A. (1995). The present status of the total ozone depletion over Greece and Scotland: a comparison between Mediterranean and more northerly latitudes. International Journal of Remote Sensing, 16(10), 1751–1763.

    Article  Google Scholar 

  • Cracknell, A. P., & Varotsos, C. A. (2007). Editorial and cover: fifty years after the first artificial satellite: from Sputnik 1 to ENVISAT. International Journal of Remote Sensing, 28(10), 2071–2072.

    Article  Google Scholar 

  • Cracknell, A. P., & Varotsos, C. A. (2011). New aspects of global climate-dynamics research and remote sensing. International Journal of Remote Sensing, 32(3), 579–600.

    Article  Google Scholar 

  • Disney, M., Lewis, P., & Saich, P. (2006). 3D modeling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sensing of Environment, 100, 114–132.

    Article  Google Scholar 

  • Duke S. (2014). Seasons of the boreal forest biome.http://eb.pdn.ipublishcentral.com/product/seasons-boreal-forest-biome

  • Efstathiou, M. N., & Varotsos, C. A. (2010). On the altitude dependence of the temperature scaling behaviour at the global troposphere. International Journal of Remote Sensing, 31, 343–349.

    Article  Google Scholar 

  • Efstathiou, M., Varotsos, C., & Kondratyev, K. Y. (1998). An estimation of the surface solar ultraviolet irradiance during an extreme total ozone minimum. Meteorology and Atmospheric Physics, 68(3), 171–176.

    Article  Google Scholar 

  • Efstathiou, M. N., Varotsos, C. A., Singh, R. P., Cracknell, A. P., & Tzanis, C. (2003). On the longitude dependence of total ozone trends over middle-latitudes. International Journal of Remote Sensing, 24(6), 1361–1367.

    Article  Google Scholar 

  • Efstathiou, M. N., Tzanis, C., Cracknell, A. P., & Varotsos, C. A. (2011). New features of land and sea surface temperature anomalies. International Journal of Remote Sensing, 32(11), 3231–3238.

    Article  Google Scholar 

  • Feretis, E., Theodorakopoulos, P., Varotsos, C., Efstathiou, M., Tzanis, C., Xirou, T., et al. (2002). On the plausible association between environmental conditions and human eye damage. Environmental Science and Pollution Research, 9(3), 163–165.

    Article  Google Scholar 

  • Ferrazzoli, P. (1996). Passive microwave remote sensing of forests: a model investigation. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 433–443.

    Article  Google Scholar 

  • Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Solimini, D., & Coppo, P. (1992). Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study. IEEE Transactions on Geoscience and Remote Sensing, 30(4), 750–756.

    Article  Google Scholar 

  • Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Peńuelas, J., & Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in tree Californian vegetation types. Ecological Applications, 5(1), 28–41.

    Article  Google Scholar 

  • Gernandt, H., Goersdorf, U., Claude, H., & Varotsos, C. A. (1995). Possible impact of polar stratospheric processes on midlatitude vertical ozone distributions. International Journal of Remote Sensing, 16(10), 1839–1850.

    Article  Google Scholar 

  • Ghoraishi M., Takada J.-I., & Imai T. (2013). Radio wave propagation through vegetation. In wave propagation theories and applications. InTech.

  • Guha, A., Jacobs, J. M., Jackson, T. J., Hsu, E.-C., & Judge, J. (2003). Soil moisture mapping using ESTAR under dry continuous from the Southern Great Plains Experiment (SGP99). IEEE Transactions on Geoscience and Remote Sensing, 41(10), 2392–2397.

    Article  Google Scholar 

  • Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications (p. 929). Washington: Wiley.

    Book  Google Scholar 

  • Johannesson P. (2001). Wave propagation through vegetation at 3.1 GHz and 5.8 GHz. Lund Institute of Technology, Sweden, 109 pp.

  • Keane, R. E., Reinhardt, E. D., Scott, J., Gray, K., & Reardon, J. (2005). Estimating forest canopy bulk density using six indirect methods. Canadian Journal of Forest Research, 35, 724–739.

    Article  Google Scholar 

  • Kimmins, J. P. (2004). Forest ecology: a foundation for sustainable forest management and environmental ethics in forestry. Massachusetts: Prentice Hall 611 pp.

    Book  Google Scholar 

  • Kondratyev, K., & Varotsos, C. (1995). Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C, 18(2), 123–151.

    Article  Google Scholar 

  • Kondratyev, K. Y., Varotsos, C. A., & Cracknell, A. P. (1994). Total ozone amount trend at St Petersburg as deduced from Nimbus-7 TOMS observations. International Journal of Remote Sensing, 15(13), 2669–2677.

    Article  Google Scholar 

  • Krapivin, V. F., & Varotsos, C. A. (2016). Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools. Journal of Atmospheric Solar-Terrestrial. Physics, 150-151, 47–54.

    Article  CAS  Google Scholar 

  • Krapivin, V. F., Shutko, A. M., Chukhlantsev, A. A., Golovachev, S. P., & Phillips, G. W. (2006). GIMS-based method vegetation microwave monitoring. Environmental Modelling and Software, 21(3), 330–345.

    Article  Google Scholar 

  • Krapivin, V. F., Varotsos, C. A., & Soldatov, V. Y. (2015). New ecoinformatics tools in environmental science: applications and decision-making. London: Springer 903 pp.

    Book  Google Scholar 

  • Krapivin, V. F., Varotsos, C. A., & Soldatov, V. Y. (2017). Simulation results from a coupled model of carbon dioxide and methane global cycles. Ecological Modelling, 359, 69–79.

    Article  CAS  Google Scholar 

  • Kruopis, N., Praks, J., Arslan, A. N., Alasalmi, H., Koskinen, J. T., & Hallikainen, M. T. (1999). Passive microwave measurements of snow-covered forest areas in EMAC’95. IEEE Transactions on Geoscience and Remote Sensing, 37, 2699–2705.

    Article  Google Scholar 

  • Lewis, P. (2007). Canopy modeling as a tool in remote sensing research. In J. Vos, L. F. M. Marcelis, P. H. B. de Visser, P. C. Struik, & J. B. Evers (Eds.), Functional structural plant modeling in crop production (pp. 219–229). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Liang, S. (2004). Quantitative remote sensing of land surfaces. Hoboken: Wiley 534 pp.

    Google Scholar 

  • Liang, P., Moghaddam, M., Pierce, L. E., & Lucas, R. M. (2005). Radar backscattering model for multilayer mixed-species forests. IEEE Transactions on Geoscience and Remote Sensing, 43(11), 2612–2626.

    Article  Google Scholar 

  • Meng, Y. S., & Lee, Y. H. (2010). Investigations of foliage effect on modern wireless communication systems: a review. Progress In Electromagnetics Research, 105, 313–332.

    Article  Google Scholar 

  • Mironov V.L., Yakubov V.P., Telpukhovskiy E.D., Novil S.N., & Chukhlantsev A.A. (2005). Spectral study of microwave attenuation in a larch forest stand for oblique wave incidence. Proceedings of the Geoscience and Remote Sensing Symposium, 29–29 July 2005, Seul, South Korea, pp. 3204–3207.

  • Pampaloni, P., & Paloscia, S. (1986). Microwave emission and plant water content: a comparison between field measurements and theory. IEEE Transactions on Geoscience and Remote Sensing, 24, 900–905.

    Article  Google Scholar 

  • Pretzsch, H. (2014). Canopy space filling and tree canopy morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 327, 251–264.

    Article  Google Scholar 

  • Purkis, S. J., & Klemas, V. V. (2010). Remote sensing and global environmental change (p. 384). New York: Wiley.

    Google Scholar 

  • Ranson K.J., Rock B.N., Salas W.A., Smith K., & Williams D.L. (1992). Analysis of the dielectric properties of trunk wood in dominant conifer species from New England and Siberia. Proceedings of the International Symposium on Geoscience and Remote Sensing, 26–29 May 1992, Houston, TX, USA, pp. 1283–1285.

  • Rogers N.C., Seville A., Richter J., Ndzi D., Savage N., Caldeirinha R.F.S., Shukla A.K., Al-Nuaimi M.O., Craig K., Vilar E., & Austin J. (2002). A generic model of 1-60 GHz radio propagation through vegetation. Final Report. QinetiQ for the UK Radiocommunications Agency, Malvern Technology Centre, Malvern, 134 pp.

  • Saleh, K., Porté, A., Guyon, D., Ferrazzoli, P., & Wigneron, J.-P. (2005). A forest geometric description of a maritime pine forest suitable for discrete microwave models. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2024–2035.

    Article  Google Scholar 

  • Savage, N., Ndzi, D., Seville, A., Vilar, E., & Austin, J. (2003). Radio wave propagation through vegetation: factors influencing signal attenuation. Radio Science, 38(5), 1088. https://doi.org/10.1029/2002RS002758.

    Article  Google Scholar 

  • Scaggs, A. K. (Ed.). (2007). New research on forest ecology (p. 260). New York: Nova Science Publisher, Inc..

    Google Scholar 

  • Schmugge, T. J., & Jackson, T. J. (1992). A dielectric model of the vegetation effects on the microwave emission from soils. IEEE Transactions on Geoscience and Remote Sensing, 30(4), 757–760.

    Article  Google Scholar 

  • Shabanov, N. V., Huang, D., Yang, W., Tan, B., Knyazikhin, Y., Myneni, R. B., Ahl, D. E., Gower, S. T., Huete, A. R., Aragão, L. E. O. C., & Shimabukuro, Y. E. (2005). Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE T. Geosci. Remote Sens., 43(8), 1855–1865.

    Article  Google Scholar 

  • Shugart H.H., Leemans R., & Bonan G.B. (1992). A systems analysis of the global boreal forest, edited by Cambridge University Press, Cambridge, 565 pp.

  • Smith, W. K., Hinckley, T. M., & Roy, J. (Eds.). (1994). Ecophsiology of coniferous forests (p. 338). New York: Academic Press.

    Google Scholar 

  • Tidblad, J., Kucera, V., Ferm, M., Kreislova, K., Brüggerhoff, S., Doytchinov, S., et al. (2012). Effects of air pollution on materials and cultural heritage: ICP materials celebrates 25 years of research. International Journal of Corrosion, 2012, 496321. https://doi.org/10.1155/2012/496321.

    Article  Google Scholar 

  • Van de Griend, A. A., & Wigneron, J. P. (2004). The b-factor as a function of frequency and canopy type at H-polarization. IEEE T. Geosci. Remote Sens., 42, 786–794.

    Article  Google Scholar 

  • Varotsos, C. (2002). The southern hemisphere ozone hole split in 2002. Environmental Science and Pollution Research, 9(6), 375–376.

    Article  Google Scholar 

  • Varotsos, C. (2005). Modern computational techniques for environmental data; application to the global ozone layer. Computational Science–ICCS, 2005, 43–68.

    Google Scholar 

  • Varotsos, C., & Cartalis, C. (1991). Re-evaluation of surface ozone over Athens, Greece, for the period 1901–1940. Atmospheric Research, 26(4), 303–310.

    Article  CAS  Google Scholar 

  • Varotsos, C. A., & Cracknell, A. P. (1993). Ozone depletion over Greece as deduced from Nimbus-7 TOMS measurements. International Journal of Remote Sensing, 14(11), 2053–2059.

    Article  Google Scholar 

  • Varotsos, C. A., & Cracknell, A. P. (1994). Three years of total ozone measurements over Athens obtained using the remote sensing technique of a Dobson spectrophotometer. International Journal of Remote Sensing, 15(7), 1519–1524.

    Article  Google Scholar 

  • Varotsos, C. A., & Cracknell, A. P. (2004). New features observed in the 11-year solar cycle. International Journal of Remote Sensing, 25(11), 2141–2157.

    Article  Google Scholar 

  • Varotsos, C. A., & Tzanis, C. (2012). A new tool for the study of the ozone hole dynamics over Antarctica. Atmospheric Environment, 47, 428–434.

    Article  CAS  Google Scholar 

  • Varotsos, C., Kalabokas, P., & Chronopoulos, G. (1994). Association of the laminated vertical ozone structure with the lower-stratospheric circulation. Journal of Applied Meteorology, 33(4), 473–476.

    Article  Google Scholar 

  • Varotsos, C., Kondratyev, K. Y., & Katsikis, S. (1995). On the relationship between total ozone and solar ultraviolet radiation at St. Petersburg, Russia. Geophysical Research Letters, 22(24), 3481–3484.

    Article  Google Scholar 

  • Varotsos, C. A., Kondratyev, K. Y., & Cracknell, A. P. (2000). New evidence for ozone depletion over Athens, Greece. International Journal of Remote Sensing, 21(15), 2951–2955.

    Article  Google Scholar 

  • Varotsos, C., Efstathiou, M., & Tzanis, C. (2009). Scaling behaviour of the global tropopause. Atmospheric Chemistry and Physics, 9(2), 677–683.

    Article  CAS  Google Scholar 

  • Varotsos, C. A., Tzanis, C. G., & Sarlis, N. V. (2016). On the progress of the 2015–2016 El Niño event. Atmospheric Chemistry and Physics, 16(4), 2007–2011.

    Article  CAS  Google Scholar 

  • Xu, D., & Guo, X. (2014). Compare NDVI extracted from Landsat 8 imagery with that from Landsat 7 imagery. American Journal of Remote Sensing, 2(2), 10–14.

    Article  Google Scholar 

  • Xue, Y., He, X. W., Xu, H., Guang, J., Guo, J. P., & Mei, L. L. (2014). China Collection 2.0: the aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmospheric Environment, 95, 45–58. https://doi.org/10.1016/j.atmosenv.2014.06.019.

    Article  CAS  Google Scholar 

  • Yang, H., Yang, X., Heskel, M., Sun, A., & Tang, J. (2017). Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest. Scientific Reports, 7, 1267–1276.

    Article  Google Scholar 

  • Zhu Z. & Guo W. (2017). Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy. Scientific Reports, No. 7. https://doi.org/10.1038/s41598-017-09107-y.

Download references

Acknowledgements

Contribution by Dr. A.A. Chukhlantsev is gratefully acknowledged.

Funding

This work was partly supported by the International Science and Technology Centre (Grant No. 2059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Varotsos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krapivin, V.F., Varotsos, C.A. & Marechek, S.V. The Dependence of the Soil Microwave Attenuation on Frequency and Water Content in Different Types of Vegetation: an Empirical Model. Water Air Soil Pollut 229, 110 (2018). https://doi.org/10.1007/s11270-018-3773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3773-6

Keywords

Navigation