Skip to main content

Advertisement

Log in

Impact of an Urban Environment on Trace Element Concentrations in Domestically Produced Lettuce (Lactuca sativa L.)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Urban horticulture is gaining more and more attention in the context of sustainable food supply. Yet, cities are exposed to (former) industrial activities and traffic, responsible for emission of contaminants. Trace elements were monitored in soils located in the urban environment of Ghent (Belgium) and 84 samples of Lactuca satica L. lettuce grown on it. The effects of cultivation in soil versus trays, neighbouring traffic and washing of the lettuce before consumption were studied. The 0–30 cm top layer of soils appeared heterogenic in composition and enriched in Co, Cd, Ni and Pb within 10 m from the nearest road. Yet, no similar elevated concentrations could be found in the crops, except for As. Besides uptake from the roots, the presence of trace elements in the plants is also caused by the atmospheric deposition of airborne particulate matter on the leaf surface. Correlation analysis and principal component analysis (PCA) revealed that this latter transport pathway might particularly be the case for Pt, Pd and Rh. Concentrations of Cd did not exceed the 0.2 mg kg−1 (fresh weight) threshold for Cd in leafy vegetables set by the European Commission. Measurements to reduce the health risks include the washing of lettuce, which effectively reduced the number of samples trespassing the maximum Pb level of 0.3 mg kg−1 (fresh weight). Also, cultivation in trays resulted in a lower As content in the plants. Taking into account a vigilance on crop selection, cultivation substrate and proper washing before consumption are considered essential steps for safe domestic horticulture in urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akrivi, A. A., Tsogas, G. Z., Giokas, D. L., & Vlessidis, A. G. (2012). Analytical determination and bio-monitoring of platinum group elements in roadside grass using microwave assisted digestion and electrothermal atomic absorption spectrometry. Analytical Letters, 45, 526–538.

    Article  CAS  Google Scholar 

  • Alegría, A., Barberá, R., Boluda, R., Errecalde, F., Farré, R., & Lagarda, M. J. (1991). Environmental cadmium, lead and nickel contamination: possible relationship between soil and vegetable content. Fresenius’ Journal of Analytical Chemistry, 339, 654–657.

    Article  Google Scholar 

  • Amato-Lourenco, L., Moreira, T., de Oliveira Souza, V., Barbosa, F., Saiki, M., Saldiva, P., & Mauad, T. (2016). The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil. Environmental Pollution, 216, 125–134.

    Article  CAS  Google Scholar 

  • Artelt, S., Kock, H., König, H. P., Levsen, K., & Rosner, G. (1999). Engine dynamometer experiments: platinum emissions from differently aged three-way catalytic converters. Atmospheric Environment, 33, 3559–3567.

    Article  CAS  Google Scholar 

  • Barbante, C., Veysseyre, A., Ferrari, C., van de Velde, K., Morel, C., Capodaglio, G., Cescon, P., Scarponi, G., & Boutron, C. (2001). Greenland snow evidence of large scale atmospheric contamination for platinum, palladium and rhodium. Environmental Science & Technology, 35, 835–839.

    Article  CAS  Google Scholar 

  • Barefoot, R. (1999). Distribution and speciation of platinum group elements in environmental matrices. Trends in Analytical Chemistry, 18, 702–707.

    Article  CAS  Google Scholar 

  • Bartens, J., Basta, N., Brown, S., Cogger, C., Dvorak, B., Faucette, B., Groffman, P., Hettairachhchi, G., McIvor, K., Pouyat, R., Toor, G., & Urban, J. (2012). Soils in the city: a look at soils in urban areas. CSA News, 57, 4–13.

  • Bunger, J., Stork, J., & Stalder, K. (1996). Cyto and genotoxic effects of coordination complexes of platinum, palladium and rhodium in vitro. International Archives of Occupational and Environmental Health, 69, 33–38.

    Article  CAS  Google Scholar 

  • Clarke, L., Jenerette, G., & Bain, D. (2015). Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils. Environmental Pollution, 197, 1–12.

    Article  CAS  Google Scholar 

  • Commission Regulation (EU) No 420. (2011). Amending regulations setting maximum levels for certain contaminants in foodstuff text with EEA relevance, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32011R0420

  • Crnkovic, D., Ristic, M., & Antonovic, D. (2006). Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil & Sediment Contamination, 15, 581–589.

    Article  CAS  Google Scholar 

  • Deelstra, T., & Girardet, H. (2000). Urban agriculture and sustainable cities. In N. Bakker, M. Dubbeling, S. Gündel, U. Sabel Koschella, & H. de Zeeuw (Eds.), Growing cities, growing food: urban agriculture on the policy agenda (pp. 43–65). Wallingford: CABI.

  • Diamond, M., & Hodge, E. (2007). Urban contaminant dynamics: from source to effect. Environmental Science & Technology, 41, 3796–3805.

    Article  CAS  Google Scholar 

  • Djingova, R., Kovacheva, P., Wagner, G., & Markert, B. (2003). Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Science of the Total Environment, 308, 235–246.

    Article  CAS  Google Scholar 

  • Feleafel, M. N., & Mirdad, Z. M. (2013). Hazard and effects of pollution by lead on vegetable crops. Journal of Agricultural & Environmental Ethics, 26, 547–567.

    Article  Google Scholar 

  • Folens, K., Van Acker, T., Bolea-Fernandez, E., Cornelis, G., Vanhaecke, F., Du Laing, G., & Rauch, S. (2017). Identification of platinum nanoparticles in road dust leachate by single particle inductively coupled plasma-mass spectrometry. Science of the Total Environment, 615, 849–856.

    Article  Google Scholar 

  • Hassan, I. A., & Basahi, J. M. (2013). Assessing roadside conditions and vehicular emissions using roadside lettuce plants. Polish Journal of Environmental Studies, 22, 387–393.

    CAS  Google Scholar 

  • Leake, J. R., Adam-Bradford, A., & Rigby, J. E. (2009). Health benefits of ‘grow your own’ food in urban areas: implications for contaminated land risk assessment and risk management? Environmental Health, 8, 6.

    Article  Google Scholar 

  • Leśniewska, B. A., Godlewska-Żyłkiewicz, B., Bocca, B., Caimi, S., Caroli, S., & Hulanicki, A. (2004). Platinum, palladium and rhodium content in road dust, tunnel dust and common grass in Białystok area (Poland): a pilot study. Science of the Total Environment, 321, 93–104.

    Article  Google Scholar 

  • Lough, G., Schauer, J. J., Park, J. S., Schafer, M. M., Deminter, J. T., & Weinsein, J. (2005). Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology, 39, 826–836.

    Article  CAS  Google Scholar 

  • Markert, B., Wünschmann, S., Franzie, S., Graciana Figuereido, A. M., Ribeirao, A., & Wang, M. (2011). Bioindication of atmospheric trace metals-with special reference to megacities. Environmental Pollution, 159, 1991–1995.

    Article  CAS  Google Scholar 

  • Murphy, E. A., & Aucott, M. (1998). An assessment of the amounts of arsenic pesticides used historically in a geographical area. Science of the Total Environment, 218, 89–101.

    Article  CAS  Google Scholar 

  • de Muynck, A. (2011). Stadslandbouw en duurzame gebiedsontwikkeling. the Netherlands: Erasmus University Rotterdam.

    Google Scholar 

  • Nabulo, G., Young, S. D., & Black, C. R. (2010). Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Science of the Total Environment, 408, 5338–5351.

    Article  CAS  Google Scholar 

  • Nischwitz, V., Michalke, B., & Kettrup, A. (2003). Speciation of Pt(II) and Pt(IV) in spiked extracts from road dust using on-line liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1016, 223–234.

    Article  CAS  Google Scholar 

  • Patel, R., Warren, N., Williams, M., Chen, E., & Xu, X. (2011). An investigation of urban agriculture on residential blocks in Vancouver (p. 22). https://doi.org/10.14288/1.0074557.

  • Rauch, S., Hemond, H. F., Barbante, C., Owari, M., Morrison, G. M., Peucker-Ehrenbrink, B., & Wass, U. (2005). Importance of automobile exhaust catalyst emissions for the deposition of platinum, palladium, and rhodium in the Northern Hemisphere. Environmental Science & Technology, 39, 8156–8162.

    Article  CAS  Google Scholar 

  • Ravindra, K., Bencs, L., & Van Grieken, R. (2004). Platinum group elements in the environment and their health risk. Science of the Total Environment, 318, 1–43.

    Article  CAS  Google Scholar 

  • Säumel, I., Kotsyuk, I., Holscher, M., Lenkereit, C., Weber, F., & Kowarik, I. (2012). How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environmental Pollution, 165, 124–132.

    Article  Google Scholar 

  • Soga, M., Gaston, K., & Yamaura, Y. (2017). Gardening is beneficial for health: a meta-analysis. Preventive Medicine Reports, 5, 92–99.

    Article  Google Scholar 

  • Spaziani, F., Angelone, M., Coletta, A., Salluzzo, A., & Cremisini, C. (2008). Determination of platinum group elements and evaluation of their traffic-related distribution in Italian urban environments. Analytical Letters, 41, 2658–2683.

    Article  CAS  Google Scholar 

  • Tack, F.M.G. (2010). Trace elements: general soil chemistry, principles and processes. In P. Hooda (Ed.), Trace elements in soils (pp. 9–32). Hoboken: Wiley.

  • Tack, F. M. G., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. International Journal of Environmental Analytical Chemistry, 59, 225–238.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture (1999). Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys, 2nd Edn, p. 886.

  • Van Reeuwijk, L.P. (2002). Procedures for soil analysis. International Soil Reference and Information Centre and Food and Agriculture Organization of the United Nations, 6th Technical Paper, p. 9.

  • Vlarem. (2013). Decision of the Flemish Government of 2013 concerning general and sectorial regulations with regards to Environmental Issues, Appendix 2.4.2. Environmental quality norms for the soil. http://www.emis.vito.be Accessed 13 Nov 2017.

  • VMM. (2017). Lokaal luchtkwaliteitsplan Gent, available from: stad.gent/sites/default/files/page/documents/Lokaal%20Luchtkwaliteitsplan%20gent.pdf.

  • Walkley, A., & Black, I. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–37.

    Article  CAS  Google Scholar 

  • Wiseman, C., & Zereini, F. (2009). Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Science of the Total Environment, 407, 2493–2500.

    Article  CAS  Google Scholar 

  • Young, T., Heeraman, D. A., Sirin, G., & Ashbaugh, L. L. (2002). Resuspension of soil as a source of airborne lead near industrial facilities and highways. Environmental Science & Technology, 36, 2484–2490.

    Article  CAS  Google Scholar 

  • Zhao, H., Cui, B., & Zhang, K. (2010). The distribution of heavy metal in surface soils and their uptake by plants along roadside slopes in longitudinal range gorge region, China. Environmental Earth Sciences, 61(5), 1013–1023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank participants of the project and express their appreciation for the assistance by Diether Debuysscher, Vincent Deweerdt and the laboratory technicians of the Laboratory of Analytical Chemistry and Applied Ecochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Folens.

Electronic supplementary material

ESM 1

(PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folens, K., Van Labeke, MC. & Du Laing, G. Impact of an Urban Environment on Trace Element Concentrations in Domestically Produced Lettuce (Lactuca sativa L.). Water Air Soil Pollut 228, 457 (2017). https://doi.org/10.1007/s11270-017-3635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3635-7

Keywords

Navigation