Skip to main content
Log in

Organic Matter and Nutrients Removal in Tropical Constructed Wetlands Using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In tropical countries like Colombia, a large variety of available aquatic plants have yet to be investigated for phytodepuration processes. The aim of this study was to assess the effect of Cyper-us ligularis and Echinocloa colona¸ two local plants of Colombian Caribbean region, on removal of dissolved organic matter (COD) and nutrients (N-NH4 +, N-NO3 and P-PO4 −3) from domestic wastewater. Experiments were conducted in replicate pilot-scale Horizontal Subsurface Flow Constructed Wetlands (HSSF CWs) (0.66 m2). Four wetland treatment units were installed in parallel. Two were planted with C. ligularis and the other two remained with E. colona. The experimental system was connected to a 0.76-m3 primary sedimentation tank that fed experimental wetland treatment units. Wetlands were filled with granite gravel (~8 mm and 0.4 of porosity). During a period of 4 months, each treatment unit received a continuous loading at the rate of 42 L day−1 and a hydraulic retention time of 2.3 days approximately. Wastewater samples from influent and effluents were collected three times each week in order to monitor temporal/spatial changes in removals efficiencies of COD, N-NH4 +, N-NO3 , and P-PO4 −3. Results showed that removals of COD, N-NH4 +, and N-NO3 were not significantly different between treatments (p > 0.05). Nevertheless, P-PO4 −3 removal for E. colona was significantly higher than C. ligularis (p < 0.05), showing that this plant can assimilate important amounts of P. Further investigations must be conducted to evaluate the potential of native aquatic macrophytes for phytodepuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinbile, C. O., Suffian, M., & Zuki, A. Z. A. (2012). Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan. Waste Management, 32(7), 1387–1393. doi:10.1016/j.wasman.2012.03.002.

    Article  CAS  Google Scholar 

  • Akratos, C. S., & Tsihrintzis, V. A. (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 29, 173–191. doi:10.1016/j.ecoleng.2006.06.013.

    Article  Google Scholar 

  • APHA-AWWA-WPCF. (2012). Standard methods for the examination of water and wastewater (22nd ed.).

  • Aristi, I., von Schiller, D., Arroita, M., Barceló, D., Ponsatí, L., García-Galán, M. J., et al. (2015). Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: subsidy or stress? Freshwater Biology, 60(7), 1398–1410. doi:10.1111/fwb.12576.

    Article  CAS  Google Scholar 

  • Bilgin, M., Şimşek, I., & Tulun, Ş. (2014). Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecological Engineering, 70, 362–365. doi:10.1016/j.ecoleng.2014.06.032.

    Article  Google Scholar 

  • Blanco-Fontalvo, E. E. (2008). Tratamiento de aguas de producción con humedales construidos de tipo subsuperficial. Universidad de Zulia.

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5), 11–17.

    CAS  Google Scholar 

  • Burgos, V., Araya, F., Reyes-Contreras, C., Vera, I., & Vidal, G. (2017). Performance of ornamental plants in mesocosm subsurface constructed wetlands under different organic sewage loading. Ecological Engineering, 99, 246–255. doi:10.1016/j.ecoleng.2016.11.058.

    Article  Google Scholar 

  • Caselles-Osorio, A., Vega, H., Lancheros, J. C., Casierra-Martínez, H. A., & Mosquera, J. E. (2017). Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. Ecological Engineering, 99, 479–485.

    Article  Google Scholar 

  • Charris, J. C., & Caselles-Osorio, A. (2016). Eficiencia de eliminación de contaminantes del agua residual doméstica con humedales construidos experimentales plantados con Cyperus ligularis (Cyperaceae) y Echinochloa colonum (Poaceae) (Vol. VII, pp. 95–105).

  • Chauhan, B. S., & Johnson, D. E. (2009). Seed germination ecology of junglerice (Echinochloa colona): a major weed of Rice. Weed Science, 57(3), 235–240. doi:10.1614/WS-08-141.1.

    Article  CAS  Google Scholar 

  • Chen, Y., Wen, Y., Zhou, Q., & Vymazal, J. (2014). Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands. Bioresource Technology, 157, 341–345. doi:10.1016/j.biortech.2014.01.137.

    Article  CAS  Google Scholar 

  • Díaz Acero, C. A. (2014). Tratamiento de agua residual a través de humedales. Tunja: V Congreso Internacional de Ingeniería Civil.

    Google Scholar 

  • Ebrahimi, A., Taheri, E., Ehrampoush, M. H., Nasiri, S., Jalali, F., Soltani, R., & Fatehizadeh, A. (2013). Efficiency of constructed wetland vegetated with cyperus alternifolius applied for municipal wastewater treatment. Journal of Environmental and Public Health, 2013, 1–6. doi:10.1155/2013/815962.

    Article  Google Scholar 

  • EPA-Environmental Protection Agency. (2000). Manual constructed wetlands treatment of municipal wastewaters Manual Constructed Wetlands Treatment of Municipal Wastewaters, EPA/625/R-(September), p. 166.

  • Fazlul, M. I., Rezaul, S. M., Haque, S. M. A., Islam, M. S., & Islam, M. S. (2003). Effect of population density of Echinochloa crusgalli and Echinochloa colonum on rice. Pakistan Journal of Agronomy, 2(3), 120–125.

  • Flora of North America. (2016). Flora of North America. Retrieved May 22, 2016, from http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=242357682.

  • IDEAM. (2014). Estudio Nacional del Agua. Estudio Nacional del Agua 2014.

  • International Plant Nutrition Institute (IPNI). (1999). Archivo Agronómico N o 3: Requerimientos nutricionales de los cultivos.

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands, second ed. Boca Raton: CRC Press

  • Kantawanichkul, S., Kladprasert, S., & Brix, H. (2009). Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecological Engineering, 35(2), 238–247. doi:10.1016/j.ecoleng.2008.06.002.

    Article  Google Scholar 

  • Kyambadde, J., Kansiime, F., Gumaelius, L., & Dalhammar, G. (2004). A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Research, 38(2), 475–485. doi:10.1016/j.watres.2003.10.008.

    Article  CAS  Google Scholar 

  • Leto, C., Tuttolomondo, T., La Bella, S., Leone, R., & Licata, M. (2013). Effects of plant species in a horizontal subsurface flow constructed wetland – phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecological Engineering, 61, 282–291. doi:10.1016/j.ecoleng.2013.09.014.

    Article  Google Scholar 

  • Mahmood, Q., Mirza, N., & Shaheen, S. (2015). Phytoremediation using algae and macrophytes: I. In Phytoremediation. Manegement of Environmental Contaminantes (Vol. 2, pp. 265–289). Springer. doi:10.1007/978-3-319-10969-5.

  • Meng, P., Pei, H., Hu, W., Shao, Y., & Li, Z. (2014). How to increase microbial degradation in constructed wetlands: influencing factors and improvement measures. Bioresource Technology, 157, 316–326. doi:10.1016/j.biortech.2014.01.095.

    Article  CAS  Google Scholar 

  • Metcalf, & Eddy. (2003). Wastewater engineering: treatment, disposal and reuse. New York: Mc-Graw-Hill.

    Google Scholar 

  • Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2010). Política Nacional Recurso Hídrico.

  • Nivala, J., Wallace, S., Headley, T., Kassa, K., Brix, H., van Afferden, M., & Müller, R. (2013). Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecological Engineering, 61, 544–554. doi:10.1016/j.ecoleng.2012.08.028.

    Article  Google Scholar 

  • Nwajuaku, I. I., & Okey-Onyesolu, C. F. (2017). Efficiency of Cyperus esculentus as a biofilter in treatment of domestic waste water. Saudi Journal of Engineering and Technology, 2(4), 159–170. doi:10.21276/sjeat.

    Google Scholar 

  • Okurut, T. O., Rijs, G. B. J., & Van Bruggen, J. J. A. (1999). Design and performance of experimental constructed wetlands in Uganda, planted with Cyperus papyrus and Phragmites mauritianus. Water Science and Technology, 40(3), 265–271. doi:10.1016/S0273-1223(99)00421-7.

    CAS  Google Scholar 

  • Patel, S. S., Vediya, S. D., Gajendra, C., Divyaraj, P., & Nilesh, R. (2012). The pilot study of COD removal in industrial complex effluent by wetland plants Cyperus rotundus Linn. Universal Journal of Environmental Research and Technology, 2(5), 439–442.

    CAS  Google Scholar 

  • Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology, 29(1), 83–146.

    Article  CAS  Google Scholar 

  • Romero Rojas, J. A. (2013). Tratamiento de aguas residuales. Teoría y principios de diseño (3th ed.). Bogotá: Escuela colombiana de ingeniería.

    Google Scholar 

  • Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Update on phosphorus uptake phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447–453. doi:10.1104/pp.116.2.447.

    Article  CAS  Google Scholar 

  • Stefanakis, A., Akratos, C., & Tsihrintzis, V. (2014). Vertical flow constructed wetlands. Eco-engineering systems for wastewater and sludge treatment (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Travaini-Lima, F., & Sipaúba-Tavares, L. H. (2012). Efficiency of a constructed wetland for wastewaters treatment. Acta Limnologica Brasiliensia, 24(3), 255–265. doi:10.1590/S2179-975X2012005000043.

    Article  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65. doi:10.1016/j.scitotenv.2006.09.014.

    Article  CAS  Google Scholar 

  • Zhang, D. Q., Tan, S. K., Gersberg, R. M., Sadreddini, S., Zhu, J., & Tuan, N. A. (2011). Removal of pharmaceutical compounds in tropical constructed wetlands. Ecological Engineering, 37(3), 460–464. doi:10.1016/j.ecoleng.2010.11.002.

    Article  Google Scholar 

  • Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Ng, W. J., & Tan, S. K. (2014). Application of constructed wetlands for wastewater treatment in developing countries—a review of recent developments (2000-2013). Journal of Environmental Management, 141, 116–131. doi:10.1016/j.jenvman.2014.03.015.

    Article  CAS  Google Scholar 

  • Zhu, H., Yan, B., Xu, Y., Guan, J., & Liu, S. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 63, 58–63. doi:10.1016/j.ecoleng.2013.12.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aracelly Caselles-Osorio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casierra-Martínez, H.A., Charris-Olmos, J.C., Caselles-Osorio, A. et al. Organic Matter and Nutrients Removal in Tropical Constructed Wetlands Using Cyperus ligularis (Cyperaceae) and Echinocloa colona (Poaceae). Water Air Soil Pollut 228, 338 (2017). https://doi.org/10.1007/s11270-017-3531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3531-1

Keywords

Navigation