Skip to main content
Log in

Influences of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The storage of coal combustion residue (CCR) in surface water impoundments may have an impact on nearby water quality and aquatic ecosystems. CCR contains leachable trace elements that can enter nearby waters through spills and monitored discharge. It is important, therefore, to understand their environmental fate in affected systems. This experiment examined trace element leachability into freshwater from fly ash (FA), the most common form of CCR. The effects on water quality of FA derived from both high and low sulfur coal sources as well as the influences of two different emergent macrophytes, Juncus effusus and Eleocharis quadrangulata, were evaluated in wetland microcosms. FA leachate dosings increased water electric conductivity (EC), altered pH, and, most notably, elevated the concentrations of boron (B), molybdenum (Mo), and manganese (Mn). The presence of either macrophyte species helped reduce elevated EC, and B, Mo, and Mn concentrations over time, relative to microcosms containing no plants. B and Mo appeared to bioaccumulate in the plant tissue from the water when elevated by FA dosing, while Mn was not higher in plants dosed with FA leachates. The results of this study indicate that emergent macrophytes could help ameliorate downstream water contamination from CCR storage facilities and could potentially be utilized in wetland filtration systems to treat CCR wastewater before discharge. Additionally, measuring elevated B and Mo in aquatic plants may have potential as a monitoring tool for downstream CCR contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Batty, L., Hooley, D., & Younger, P. (2008). Iron and manganese removal in wetland treatment systems: rates, processes and implications for management. Science of the Total Environment., 394, 1–8. doi:10.1016/j.scitotenv.2008.01.002.

    Article  Google Scholar 

  • Bhatia, M., & Goyal, D. (2014). Analyzing remediation potential of wastewater through wetland plants: a review. Environmental Progress & Sustainable Energy, 33, 9–27. doi:10.1002/ep.11822.

    Article  CAS  Google Scholar 

  • Brodie, G. A. Constructed wetlands for treating acid drainage at Tennessee Valley Authority coal facilities. Proceeding of the International Conference on the Use of Constructed Wetlands in Water Pollution Control, 461–470 (1990).

  • Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247. doi:10.2134/jeq1993.00472425002200020002x.

    Article  CAS  Google Scholar 

  • Cherry, D. S., & Guthrie, R. K. (1977). Toxic metals in surface waters from coal ash. Water Resources Bulletin, 13, 1227–1236.

    Article  CAS  Google Scholar 

  • Chou, C. L. (2012). Sulfur in coals: a review of geochemistry and origins. International Journal of Coal Geology, 100, 1–13. doi:10.1016/j.coal.2012.05.009.

    Article  CAS  Google Scholar 

  • R Core Team. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/.

    Google Scholar 

  • Dellantonio, A., Fitz, W. J., Repmann, F., & Wenzel, W. W. (2010). Disposal of coal combustion residues in terrestrial systems: contamination and risk management. Journal of Environmental Quality, 39, 761–775. doi:10.2134/jeq2009.0068.

    Article  CAS  Google Scholar 

  • Dorman, L., Castle, J. W., & Rodgers Jr., J. H. (2009). Performance of a pilot-scale constructed wetland system for treating simulated ash basin water. Chemosphere, 75, 939–947. doi:10.1016/j.chemosphere.2009.01.012.

    Article  CAS  Google Scholar 

  • Griffin, R. A., & Jurinak, J. J. (1973). Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Science, 166, 26–30.

    Article  Google Scholar 

  • Hallberg, K. B., & Johnson, D. B. (2005). Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Science of the Total Environment, 338, 115–124. doi:10.1016/j.scitotenv.2004.09.011.

    Article  CAS  Google Scholar 

  • Hansen, T. H., de Bang, T. C., Laursen, K. H., Pedas, P., Husted, S., & Schjoerring, J. K. (2013). Multielement plant tissue analysis using ICP spectrometry. Methods in Molecular Biology, 953, 121–141. doi:10.1007/978-1-62703-152-3_8.

    Article  CAS  Google Scholar 

  • Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: an overview. International Journal of Coal Geology, 94, 54–66. doi:10.1016/j.coal.2011.10.006.

    Article  CAS  Google Scholar 

  • Lemly, A. D. (2015). Damage cost of the Dan River coal ash spill. Environmental Pollution, 197, 55–61. doi:10.1016/j.envpol.2014.11.027.

    Article  Google Scholar 

  • Lemly, A. D., & Skorupa, J. P. (2012). Wildlife and the coal waste policy debate: proposed rules for coal waste disposal ignore lessons from 45 years of wildlife poisoning. Environmental Science & Technology, 46, 8595–8600. doi:10.1021/es301467q.

    Article  CAS  Google Scholar 

  • Lian, J. J., Xu, S. G., Zhang, Y. M., & Han, W. (2013). Molybdenum(VI) removal by using constructed wetlands with different filter media and plants. Water Science and Technology, 67(8), 1859–1866.

    Article  CAS  Google Scholar 

  • Mackova, M., Dowling, D., & Macek, T. (2006). Phytoremediation and rhizoremediation (p. 61). Dordrecht: Springer.

    Book  Google Scholar 

  • Maine, M. A., Sune, N., Hadad, H., Sanchez, G., & Bonetto, C. (2009). Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland. Journal of Environmental Management, 90, 355–363.

    Article  CAS  Google Scholar 

  • Michaud, S. C., & Richardson, C. J. (1989). Relative radial oxygen loss in five wetland plants. In D. A. Hammer (Ed.), Constructed wetlands for wastewater treatment: municipal, industrial and agricultural (pp. 501–507). Chelsea: Lewis Publishers.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (5th ed.pp. 647–648). Hoboken: Wiley.

    Google Scholar 

  • Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package, http://CRAN.R-project.org/package=PMCMR (2014).

  • Preussler, K. H., Mahler, C. F., & Maranho, L. T. (2015). Performance of a system of natural wetlands in leachate of a posttreatment landfill. International journal of Environmental Science and Technology, 12, 2623–2638. doi:10.1007/s13762-014-0674-0.

    Article  CAS  Google Scholar 

  • Richardson, C. J. (1989). Freshwater wetlands: transformers, filters or sinks? In R. R. Sharitz & J. W. Gibbons (Eds.), Freshwater wetlands and wildlife. Conf-8603101. DOE Symposium Series NO. 61 (pp. 25–46). Oak Ridge: U.S. DOE.

    Google Scholar 

  • Rowe, C. L. (2014). Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: recent advances and recommendations for further study. Science of the Total Environment, 485-486, 400–406. doi:10.1016/j.scitotenv.2014.03.119.

    Article  Google Scholar 

  • Rowe, C. L., Kinney, O. M., Fiori, A. P., & Congdon, J. D. (1996). Oral deformities in tadpoles (Rana catesbeiana) associated with coal ash deposition: effects on grazing ability and growth. Freshwater Biology, 36, 723–730.

    Article  Google Scholar 

  • Rowe, C. L., Hopkins, W. A., & Congdon, J. D. (2002). Ecotoxicological implications of aquatic disposal of coal combustion residues in the United States: a review. Environmental Monit. Assess., 80, 207–276. doi:10.1023/A:1021127120575.

    Article  CAS  Google Scholar 

  • Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., & Deonarine, A. (2010). Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey. Environmental Science and Technology, 44, 9272–9278. doi:10.1021/es1026739.

    Article  CAS  Google Scholar 

  • Ruhl, L., Vengosh, A., Dwyer, G. S., Hsu-Kim, H., Schwartz, G., Romanski, A., & Smith, S. D. (2012). The impact of coal combustion residue effluent on water resources: a North Carolina example. Environmental Science & Technology, 46, 12226–12233. doi:10.1021/es303263x.

    Article  CAS  Google Scholar 

  • Sasaki, K., Ogino, T., Endo, Y., & Kurosawa, K. (2003). Field study on heavy metal accumulation in a natural wetland receiving acid mine drainage. Materials Transactions, 44, 1877–1884.

    Article  CAS  Google Scholar 

  • Sundberg-Jones, S. E., & Hassan, S. M. (2007). Macrophyte sorption and bioconcentrations of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water, Air, and Soil Pollution, 183, 187–200. doi:10.1007/s11270-007-9368-2.

    Article  CAS  Google Scholar 

  • Turker, O. C., Bocuk, H., & Yakar, A. (2013). The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Journal of Hazardous Materials, 252-253, 132–141. doi:10.1016/j.jhazmat.2013.02.032.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering, 61P, 582–592. doi:10.1016/j.ecoleng.2013.06.023.

    Article  Google Scholar 

  • Wickham. (2001). The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40, 1–29.

    Google Scholar 

  • WCA (2014). “Coal Statistics” World Coal Association. www.worldcoal.org/resources/coal-statistics. Accessed 21 Apr 2015.

  • Ye, Z. H., Whiting, S. N., Lin, Z. Q., Lytle, C. M., Qian, J. H., & Terry, N. (2001a). Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate. Journal of Environmental Quality, 30, 1464–1473.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Whiting, S. N., Qian, J. H., Lytle, C. M., Lin, Z. Q., & Terry, N. (2001b). Trace element removal from coal ash leachate by a 10-year-old constructed wetland. Journal of Environmental Quality, 30, 1710–1719 http://www.jstatsoft.org/v40/i01/.

    Article  CAS  Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetlands plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721. doi:10.2134/jeq1998.00472425002700030032x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Duke University Wetland Center Student Research Endowment Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif H. Olson.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Disclaimer

This manuscript has been reviewed in accordance with the policy of the National Exposure Research Laboratory, US Environmental Protection Agency, and approved for publication. Approval does not signify that contents necessarily reflect views and policies of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Electronic Supplementary Material

ESM 1

(PDF 88 kb)

ESM 2

(PDF 137 kb)

ESM 3

(PDF 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, L.H., Misenheimer, J.C., Nelson, C.M. et al. Influences of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms. Water Air Soil Pollut 228, 344 (2017). https://doi.org/10.1007/s11270-017-3520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3520-4

Keywords

Navigation