Skip to main content
Log in

Silica Nanoparticles Modified with Trithiocyanuric Acid as a Potential Adsorbent for Removal of Ag+ from Aqueous Solutions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Surface modification of the silica nanoparticles was performed using trithiocyanuric acid (TCA-SNPs) so as to enhance the adsorption of Ag+ from aqueous solutions. The surface modification to the adsorbent was characterized by Fourier transform infrared spectroscopy, transmission electron microscope, and X-ray photoelectron spectroscopy. The Ag+ adsorption capacity was found to increase with increase in the solution pH, with the optimal pH being 5.0. The Ag+ adsorption isotherm was generated at 25 °C at the optimal solution pH and the maximum adsorption capacity was found to be 80 mg/g, significantly higher than the adsorption capacity reported for other adsorbents in literature. The increase in adsorption capacity was attributed to the presence of thiol groups on the surface of the modified adsorbents. Additionally, the adsorption kinetics was estimated at 25 °C, which indicated very high rates of adsorption initially, with rapid reduction in rate of adsorption with time. Both adsorption isotherms as well as the adsorption kinetics were modeled with popular models. The adsorption isotherm was found to match with the Langmuir model while the adsorption kinetics was found to match with the pseudo-second-order kinetic model. The adsorption-desorption cycles indicate the TCA-SNPs to be stable adsorption performance and retain high adsorption efficiency ensuring commercial adoption. A relatively low adsorption of other ions such as Mn2+, Cu2+, Ni2+, Co3+ as compared to Ag+ was ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abinashi, S., Jeongwon, P., Hyoeun, K., & Pyung-Kyu, P. (2016). Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. Journal of Industrial and Engineering Chemistry, 35, 277–286.

    Article  Google Scholar 

  • Ali, L. I. A., Ibrahim, W. A. W., Sulaiman, A., Kamboh, M. A., & Sanagi, M. M. (2016). New chrysin-functionalized silica-core shell magnetic nanoparticles for the magnetic solid phase extraction of copper ions from water samples. Talanta, 148, 191–199.

    Article  Google Scholar 

  • Bootharaju, M. S., & Pradeep, T. (2011). Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir, 27, 8134–8143.

    Article  CAS  Google Scholar 

  • Bose, P., Bose, M. A., & Kumar, S. (2002). Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Advances in Environmental Research, 7, 179–195.

    Article  CAS  Google Scholar 

  • Cecen, F., Semerci, N., & Geyik, A. G. (2010). Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge. Journal of Hazardous Materials, 178, 619–627.

    Article  CAS  Google Scholar 

  • Chang, Y. C., Chang, S. W., & Chen, D. H. (2006). Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. Reactive and Functional Polymers, 66, 335–341.

    Article  CAS  Google Scholar 

  • Coruh, S., Senel, G., & Ergun, O. N. (2010). A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal. Journal of Hazardous Materials, 180, 486–492.

    Article  CAS  Google Scholar 

  • Eckelman, M. J., & Graedel, T. E. (2007). Silver emissions and their environmental impacts: a multilevel assessment. Environmental Science & Technology, 41, 6283–6289.

    Article  CAS  Google Scholar 

  • EI-Shahawi, M. S., Bashammakh, A. S., & Bahaffi, S. O. (2007). Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination. Talanta, 72, 1494–1499.

    Article  Google Scholar 

  • Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E., Najibi, A., & Soylak, M. (2009). Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples. Journal of Hazardous Materials, 168, 1022–1027.

    Article  CAS  Google Scholar 

  • Hassan, M. L., & El-Wakil, N. A. (2003). Heavy metal ion removal by amidoximated bagasse. Journal of Applied Polymer Science, 87, 666–670.

    Article  CAS  Google Scholar 

  • He, C., Ren, L., Zhu, W., Xu, Y., & Qian, X. (2015). Removal of mercury from aqueous solution using mesoporous silica nanoparticles modified with polyamide receptor. Journal of Colloid and Interface Science, 458, 229–234.

    Article  CAS  Google Scholar 

  • Hou, H., Yu, D., & Hu, G. (2015). Preparation and properties of ion-imprinted hollow particles for the selective adsorption of silver ions. Langmuir, 31, 1376–1384.

    Article  CAS  Google Scholar 

  • Kirci, S., GÜlfen, M., & Aydin, A. O. (2009). Separation and recovery of silver(I) ions from base metal ions by thioureaor urea-formaldehyde chelating resin. Separation Science and Technology, 44, 1869–1883.

    Article  CAS  Google Scholar 

  • Li, X., Wang, Z., Li, Q., Ma, J., & Zhu, M. (2015). Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption. Chemical Engineering Journal, 273, 630–637.

    Article  CAS  Google Scholar 

  • Lihareva, N., Dimova, L., Petrov, O., & Tzvetanova, Y. (2010). Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes. Microporous and Mesoporous Materials, 130, 32–37.

    Article  CAS  Google Scholar 

  • Liu, P., Borrell, P. F., Bozic, M., Kokol, V., Oksman, K., & Mathew, A. P. (2015). Nano-celluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. Journal of Hazardous Materials, 294, 177–185.

    Article  CAS  Google Scholar 

  • Lu, X., Yin, Q., Xin, Z., & Zhang, Z. (2010). Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres. Chemical Engineering Science, 65, 6471–6477.

    Article  Google Scholar 

  • Manzoori, J. L., Abdolmohammad-Zadeh, H., & Amjadi, M. (2007). Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology. Journal of Hazardous Materials, 144, 458–463.

    Article  CAS  Google Scholar 

  • Manzoori, J. L., Amjadi, M., & Hallaj, T. (2009). Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 89, 749–758.

    Article  CAS  Google Scholar 

  • Monier, M., Ayad, D. M., & Sarhan, A. A. (2010). Adsorption of Cu(II), Hg(II) and Ni(II) ions by modified natural wool chelating fibers. Journal of Hazardous Materials, 176, 348–355.

    Article  CAS  Google Scholar 

  • Moshhadizadeh, M. H., & Karami, Z. (2011). Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4-thiadiazole and their determination by ICP-OES. Journal of Hazardous Materials, 190, 1023–1029.

    Article  Google Scholar 

  • Nguyen-Phan, T. D., Pham, H. D., Kim, S., Oh, E. S., Kim, E. J., & Shin, E. W. (2010). Surfactant removal from mesoporous TiO2 nanocrystals by supercritical CO2 fluid extraction. Journal of Industrial and Engineering Chemistry, 16, 823–828.

    Article  CAS  Google Scholar 

  • Peng, X., Zhang, W., Gai, L., Jiang, H., Wang, Y., & Zhao, L. (2015). Dedoped Fe3O4/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution. Chemical Engineering Journal, 280, 197–205.

    Article  CAS  Google Scholar 

  • Pourreza, N., Rastegarzadeh, S., & Larki, A. (2014). Nano-TiO2 modified with 2-mercaptobenzimidazole as an efficient adsorbent for removal of Ag(I) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 20, 127–132.

    Article  CAS  Google Scholar 

  • Quang, D. V., Lee, J. E., Kim, J., Kim, Y. N., Shao, G. N., & Kim, H. T. (2013). A gentle method to graft thiol-functional groups onto silica gel for adsorption of silver ions and immobilization of silver nanoparticles. Powder Technology, 235, 221–227.

    Article  CAS  Google Scholar 

  • Reddy, S. R., Pandey, N. K., Mallika, C., & Mudali, U. K. (2016). Equilibrium and kinetics of adsorption of ruthenium on activated charcoal from nitric acid solutions. Chemical Engineering Research and Design, 115, 91–97.

    Article  CAS  Google Scholar 

  • Saif, A. C., Zakiullah, Z., & Sharf, I. S. (2017). Isotherm, kinetic and thermodynamics of arsenic adsorption onto iron-zirconium binary oxide-coated sand (IZBOCS): modelling and process optimization. Molecular Liquids, 229, 230–240.

    Article  Google Scholar 

  • Shin, K. Y., Hong, J. Y., & Jang, J. (2011). Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study. Journal of Hazardous Materials, 190, 36–44.

    Article  CAS  Google Scholar 

  • Soumya, R. M., Rachna, C., Jipsi, K. A., & Savariya, D. B. (2017). Kinetics and isotherm studies for the adsorption of metal ions onto two soil types. Environmental Technology & Innovation, 7, 87–101.

    Article  Google Scholar 

  • Soylak, M.,  Cay, R. S.(2007). Separation/preconcentration of silver(I) and lead(II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 146, 142–147

  • Tahmasebi, E., & Yamini, Y. (2014). Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II). Microchimica Acta, 181, 543–551.

    Article  CAS  Google Scholar 

  • Tang, B., Yu, G., Fang, J., & Shi, T. (2010). Recovery of high-purity silver directly from dilute effluents by an emulsion liquid membrane-crystallization process. Journal of Hazardous Materials, 177, 377–383.

    Article  CAS  Google Scholar 

  • Xie, F., Lin, X., Wu, X., & Xie, Z. (2008). Solid phase extraction of lead(II), copper(II), cadmium(II) and nickel(II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta, 74, 836–843.

    Article  CAS  Google Scholar 

  • Yirikoglu, H., & GÜlfen, M. (2008). Separation and recovery of silver(I) ions from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Separation Science and Technology, 43, 376–388.

    Article  CAS  Google Scholar 

  • Zeliyha, Ç., Gülfen, M., & Aydın, A. O. (2010). Synthesis of a novel dithiooxamide-formaldehyde resin and its application to the adsorption and separation of silver ions. Journal of Hazardous Materials, 174, 556–562.

    Article  Google Scholar 

  • Zhang, S. W., Xu, W. Q., Zeng, M. Y., Li, J., Li, J. X., Xu, J. Z., & Wang, X. K. (2013). Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry A, 1, 11691–11697.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, Y., & Helleur, R. (2015). Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea-glutaraldehyde. Chemical Engineering Journal, 264, 56–65.

    Article  CAS  Google Scholar 

  • Zhang, S. W., Fan, Q. H., Gao, H. H., Huang, Y. S., Liu, X., Li, J. X., Xu, X. J., & Wang, X. K. (2016). Formation of Fe3O4@MnO2 ball-in-ball hollow spheres as a high performance catalyst with enhanced catalytic performances. Journal of Materials Chemistry A, 4, 1414–1422.

    Article  CAS  Google Scholar 

  • Zhang, L. B., Zhang, G. W., Wang, S. X., Peng, J. H., & Cui, W. (2017). Sulfoethyl functionalized silica nanoparticle as an adsorbent to selectively adsorb silver ions from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 71, 330–337.

    Article  CAS  Google Scholar 

  • Zhao, Y. G., Li, J. X., Zhang, S. W., & Wang, X. K. (2014a). Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI). RSC Advances, 4, 32710–32717.

    Article  CAS  Google Scholar 

  • Zhao, Y. G., Li, J. X., Zhao, L. P., Zhang, S. W., Huang, Y. S., Wu, X. L., & Wang, X. K. (2014b). Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chemical Engineering Journal, 235, 275–283.

    Article  CAS  Google Scholar 

  • Zhao, Y. G., Wang, X. X., Li, J. X., & Wang, X. K. (2015). Amidoxime functionalization of mesoporous silica and its high removal of U(VI). Polymer Chemistry, 6, 5376–5384.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation (Nos. 51464024 and 51664037), the Yunnan Province Young Academic Technology Leader Reserve Talents (2012HB008), and the Yunnan Province Natural Science Foundation (2013FB096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhang, L., Wang, S. et al. Silica Nanoparticles Modified with Trithiocyanuric Acid as a Potential Adsorbent for Removal of Ag+ from Aqueous Solutions. Water Air Soil Pollut 228, 273 (2017). https://doi.org/10.1007/s11270-017-3464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3464-8

Keywords

Navigation