Skip to main content
Log in

Genotoxicity in the Offspring of Rats Exposed to Contaminated and Acidified Experimentally Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the genotoxic and mutagenic potential of contaminated soil diluted in acidic solutions and not acidic, in the offspring of rats exposed during pregnancy and neonatal periods. To this end, a comet assay and micronucleus test were performed. Soil samples were solubilized in the following three solvents: distilled water (control group), acid solvent at pH 5.2, and acid solvent at pH 3.6. Soil and solvent were mixed in a rate of 1:2 in g/mL, and hydrofluoric acid was used in the acid solvents. In the comet assay, the tail length, percentage of DNA within the tail and tail moment was analyzed in the whole blood of the pups that were studied. The number of micronuclei found in the bone marrow cells was counted in the micronucleus test. In all parameters evaluated in the comet assay, the group exposed to the lowest pH value when associated with contaminated soil (p < 0.05) had the most damage. However, the micronucleus test showed differences between all exposed groups and the control group (p < 0.05). These results reaffirm the health risks related to the exposure to soil contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Saleh, I., Shinwari, N., Mashhour, A., Mohamed, G. E. D., & Rabah, A. (2011). Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. International Journal of Hygiene and Environmental Health, 214(2), 79–101.

    Article  CAS  Google Scholar 

  • Averbeck, D. (2000). Mécanismes de réparation et mutagenèse radio-induite chez les eucaryotes Supérieurs. Cancer/Radiother, 4, 335–354.

    Article  CAS  Google Scholar 

  • Barbosa, A. C., & Dórea, J. G. (1998). Indices of mercury contamination during breast feeding in the Amazon Basin. Environmental Toxicology and Pharmacology, 6, 71–79.

    Article  CAS  Google Scholar 

  • Chen, S., Zhang, X., Liu, Y., HU, Z., Shen, X., & Ren, J. (2014). Simulated acid rain changed the proportion of heterotrophic respiration in soil respiration in a subtropical secondary forest. Applied Soil Ecology, 86, 148–157.

    Article  Google Scholar 

  • Da Silva-Junior, F. M. R., & Vargas, V. M. F. (2009). Using the salmonella assay to delineate the dispersion routes of mutagenic compounds from coal wastes in contaminated soil. Mutation Research, 673, 116–123.

    Article  Google Scholar 

  • Da Silva-Júnior, F. M. R., Rocha, J. A. V., & Vargas, V. M. F. (2009). Extraction parameters in the mutagenicity assay of soil samples. Science Total Environmental, 427, 6017–6023.

    Article  Google Scholar 

  • Da Silva-Júnior, F. M. R., Silva, P. F., Garcia, E. M., Klein, R. D., Peraza-Cardoso, G., Baisch, P. R., Vargas, V. M. F., & Muccillo-Baisch, A. L. (2013). Toxic effects of the ingestion of water-soluble elements found in soil under the atmospheric influence of an industrial complex. Environmental Geochemistry and Health, 35, 317–331.

    Article  Google Scholar 

  • Da Silva-Júnior, F. M. R., Garcia, E. M., & Muccillo-Baisch, A. L. (2014). Acute toxicity of soil samples under the atmospheric inflence of an industrial complex using Swiss mice. Ecotoxicology Environmental Contamination, 9, 29–31.

    Article  Google Scholar 

  • Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3–11.

    Article  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience, 51(3), 180–198.

    Article  Google Scholar 

  • EPA, U.S. Environmental Protection Agency (EPA) (2011). Exposure factors handbook: 2011 edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. http://www.epa.gov/ncea/efh, 2011, Accessed 30 Nov 2014.

  • Fenech, M., Holland, N., Chang, W. P., Zeiger, E., & Bonassi, S. (1999). Show more the human micronucleus project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutation Research, 428, 271–283.

    Article  CAS  Google Scholar 

  • Garcia, E. M., da Silva Junior, F. M. R., Soares, M. C. F., & Muccillo-Baisch, A. L. (2015). Developmental effects of parental exposure to soil contaminated with urban metals. Science of the Total Environment, 520, 206–212.

    Article  CAS  Google Scholar 

  • Garcia, E. M., da Silva Junior, F. M. R., & Muccillo-Baisch, A. L. (2016). Mutagenic effect of contaminated soil on the offspring of exposed rats. Acta Scientiarum. Health Sciences, 38(1), 19–22.

    Google Scholar 

  • Glanz, J. T. (1995). Saving our soil: solutions for sustaining earth’s vital resource. USA: Joh. Bo.

    Google Scholar 

  • Gustavino, B., Buschini, A., Monfrinotti, M., Rizzoni, M., Tancioni, L., Poli, P., & Rossi, C. (2005). Modulating effects of humic acids on genotoxicity induced by water disinfectants in Cyprinus carpio. Mutation Research, 587, 103–113.

    Article  CAS  Google Scholar 

  • Iarmarcovai, G., Ceppi, M., Botta, A., Orsière, T., & Bonassi, S. (2008). Micronuclei frequency in peripheral blood lymphocytes of cancer patients: a meta analysis. Mutation Research, 659, 274–283.

    Article  CAS  Google Scholar 

  • Kuriwaki, J. I., Nishijo, M., Honda, R., Tawara, K., Nakagawa, H., Hori, E., & Nishijo, H. (2005). Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney. Toxicology Letters, 156(3), 369–376.

    Article  CAS  Google Scholar 

  • Lucio-Neto, M.P. (2011). Avaliação tóxica, citotóxica, genotóxica e mutagênica do composto 3-(2-Cloro-6-Fluorobenzil)-Imidazolidina-2,4-Diona em células eucarióticas. MSc Dissertation. Federal University of Piauí, Teresina.

  • Mirlean, N., Vanz, A., & Baisch, P. (2000). Níveis e origem da acidificação das chuvas na região do Rio Grande. Química Nova, 23(5), 590–593.

    Article  CAS  Google Scholar 

  • Monarca, S. (2002). Soil contamination detected using bacterial and plant mutagenicity tests and chemical analyses. Environmental Research, 88, 64–69.

    Article  CAS  Google Scholar 

  • Muccillo-Baisch, A. L., Mirlean, N., Carrazzoni, D., Soares, M. C. F., Goulart, G. P., & Baisch, P. (2011). Health effects of ingestion of mercury-polluted urban soil: an animal experiment. Environmental Geochemistry and Health, 33, 1–11.

    Google Scholar 

  • Nowak, M. A., Komarova, N. L., Sengupta, A., Jallepalli, P. V., Shih, I. M., Vogelstein, B., & Lengauer, C. (2002). The role of chromosomal instability in tumor initiation. Proceedings of the National Academy of the United States of America, 99(25), 16226–16231.

    Article  CAS  Google Scholar 

  • Oliveira, C. S., Oliveira, V. A., Ineu, R. P., Moraes-Silva, L., & Pereira, M. E. (2012). Biochemical parameters of pregnant rats and their offspring exposed to different doses of inorganic mercury in drinking water. Food and Chemical Toxicology, 50(7), 2382–2387.

    Article  CAS  Google Scholar 

  • Pohren, R. S., Rocha, J. A. V., Leal, K. A., & Vargas, V. M. F. (2012). Soil mutagenicity as a strategy to evaluate environmental and health risks in acontaminated area. Environment International, 44, 40–52.

    Article  CAS  Google Scholar 

  • Pueyo, M., Sastre, J., Hernandez, E., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Enviornmental Quality, 32, 2054–2066.

    Article  CAS  Google Scholar 

  • Ribeiro, L. R., Salvadori, D. M. F., & Marques, E. K. (2003). Mutagênese ambiental. Canoas: Ulbra.

    Google Scholar 

  • Singh, H., et al. (1988). Isolation by screening of an expression library with a recognition site DNA. Cell Press, 52, 415–423.

    CAS  Google Scholar 

  • Steinert, S. A., Montee, R. S., Leather, J. M., & Chadwick, D. B. (1998). DNA damage in mussels at sites in San Diego Bay. Mutation Research, 399, 65–85.

    Article  CAS  Google Scholar 

  • Stevens, C. J., Dise, N. B., & Gowing, D. J. (2009). Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental Pollution, 157, 313–319.

    Article  CAS  Google Scholar 

  • Zenick, H., & Clegg, E. D. (1989). Assessment of male reproductive toxicity. A risk assessment approach. In W. Hayes (Ed.), Principles and methods of Toxicology (pp. 275–309). New York: Raven Press.

    Google Scholar 

  • Zhang, J.-E., Ouyang, Y., & Ling, D. J. (2007). Impacts of simulated acid rain on cation leaching from the latosol in south China. Chemosphere, 67, 2131–2137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Manoel Rodrigues da Silva Junior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, E.M., da Silva Junior, F.M.R., Tavella, R.A. et al. Genotoxicity in the Offspring of Rats Exposed to Contaminated and Acidified Experimentally Soils. Water Air Soil Pollut 228, 254 (2017). https://doi.org/10.1007/s11270-017-3440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3440-3

Keywords

Navigation