Skip to main content

Advertisement

Log in

Comprehensive Model for Remediation of Sandy Soils Contaminated with Volatile Organic Compounds Using Thermal Enhancement of Soil Vapor Extraction Method

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In today’s world, remediation of the environmental pollutants including soil contaminations is among the main issues and concerns considered by environmental scientists. Vapor extraction method is an in situ method to clean up volatile and semi-volatile contaminants of soil especially in unsaturated areas. Thermal enhancement to extract vapors includes different technologies. Its purpose is to transfer heat to the subsurface of the soil to increase the vapor pressure of volatile organic compounds and, consequently, to increase the amount of extracted VOCs. In this study, modeling was done by using laboratory data after screening. Validation was also done with the help of an artificial neural network using the response surface methodology. After training and evaluating the model, it was found that this model determines the amount of contaminant removal rate according to available data and different temperatures by good measures. The correlation coefficient square was equal to 0.95 in the validation section by the neural network. This coefficient was equal to 0.99 in the original model. At the end, a contaminant removal formula for sandy soils has been presented. As a result, due to the proximity of the correlation coefficient to 1, this model can be used to predict the removal rate of thermal enhancement in the relevant circumstances with a slight error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal, A., & Liu, Y. (2015). Remediation technologies for oil-contaminated sediments. Marine Pollution Bulletin, 101(2), 483–490. doi:10.1016/j.marpolbul.2015.09.010.

    Article  CAS  Google Scholar 

  • Air Force Center for Environmental Excellence. (2001). Environmental restoration program guidance on soil vapor extraction optimization.

  • Albergaria, J. T., da Alvim-Ferraz, M. C. M., & Delerue-Matos, C. (2008). Soil vapor extraction in sandy soils: influence of airflow rate. Chemosphere, 73, 1557–1561. doi:10.1016/j.chemosphere.2008.07.080.

    Article  CAS  Google Scholar 

  • Beyke, G., & Fleming, D. (2005). In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating. Remediation Journal, 15(3), 5–22. doi:10.1002/rem.20047.

    Article  Google Scholar 

  • Brusseau, M. L., Rohay, V., & Truex, M. J. (2010). Analysis of soil vapor extraction data to evaluate mass-transfer constraints and estimate source-zone mass flux. Ground Water Monitoring and Remediation, 30(3), 57–64. doi:10.1111/j.1745-6592.2010.01286.x.

    Article  CAS  Google Scholar 

  • Dablow, J. F., Pearce, J. A., Johnson, P. C., Balshaw-Biddle, K., Oubre, C. L., & Ward, C. H. (2000). Steam and electroheating remediation of tight soils. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Di, P., Chang, D. P. Y., & Dwyer, H. A. (2002). Modeling of polychlorinated biphenyl removal from contaminated soil using steam. Environmental Science and Technology, 36(8), 1845–1850. doi:10.1021/es010739o.

    Article  CAS  Google Scholar 

  • EPA. (1989). Risk assessment guidance for superfund (Vol. I). Washington, DC.

  • EPA. (2006). In situ treatment technologies for contaminated soil. Epa, pp. 15–20.

  • Gibson, T. L., Abdul, A. S., Glasson, W. A., Ang, C. C., & Gatlin, D. W. (1993). Vapor extraction of volatile organic compounds from clay soil: a long-term field pilot study. Ground Water, 31(4), 616–626. doi:10.1111/j.1745-6584.1993.tb00595.x.

    Article  CAS  Google Scholar 

  • Hamby, D. M. (1996). Site remediation techniques supporting environmental restoration activities—a review. Science of the Total Environment, 191(3), 203–224. doi:10.1016/S0048-9697(96)05264-3.

    Article  CAS  Google Scholar 

  • Irwin, R. J., Mouwerik, M. V., Stevens, L., Seese, D. M., & Basham, W. (2013). Enviromental contaminants encyclopedia. Journal of Chemical Information and Modeling, 53(9), 1689–1699. doi:10.1017/CBO9781107415324.004.

    Google Scholar 

  • Li, Y., Zhang, R., Wang, T., Wang, Y., Xu, T., Li, L., et al. (2016). Determination of n-alkanes contamination in soil samples by micro gas chromatography functionalized by multi-walled carbon nanotubes. Chemosphere, 158, 154–162. doi:10.1016/j.chemosphere.2016.05.068.

    Article  CAS  Google Scholar 

  • Lowe, D. F., Oubre, C. L., & Herb Ward, C. (2000). Soil vapor extraction using radio frequency heating: resource manual and technology demonstration. Journal of Hazardous Materials, 74(3), 218–219. doi:10.1016/S0304-3894(00)00170-9.

    Article  Google Scholar 

  • Ngo, C., & Natowitz, J. (2009). Our energy future: resources, alternatives and the environment. Wiley survival guides in engineering and science (2nd Editio.). http://www.dawsonera.com/depp/athens?url=http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780470473788. Accessed 5 Nov 2016.

  • Nguyen, V. T., Zhao, L., & Zytner, R. G. (2013). Three-dimensional numerical model for soil vapor extraction. Journal of Contaminant Hydrology, 147, 82–95. doi:10.1016/j.jconhyd.2013.02.008.

    Article  CAS  Google Scholar 

  • Peng, S., Wang, N., & Chen, J. (2013). Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media. Journal of Contaminant Hydrology, 153, 24–36. doi:10.1016/j.jconhyd.2013.07.002.

    Article  CAS  Google Scholar 

  • Poppendieck, D. G., Loehr, R. C., & Webster, M. T. (1999). Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems: 2. Field study. Journal of Hazardous Materials, 69(1), 95–109. doi:10.1016/S0304-3894(99)00063-1.

    Article  CAS  Google Scholar 

  • Sabour, M., Rezaei, B., & Jafargholi, A. (2014). Investigating the influence of clay and heating in remediation of contaminated soil from gas-oil by soil vapor extraction. Journal of Civil Engineering (Journal of School of Engineering), 25(2), 53–65.

    Google Scholar 

  • Stinson, M. (1989). Epa site demonstration of the Terra Vac in situ vacuum extraction process in Groveland, Massachusetts.

  • Switzer, C., & Kosson, D. S. (2007). Soil vapor extraction performance in layered vadose zone materials. Vadose Zone Journal, 6(2), 397. doi:10.2136/vzj2005.0131.

    Article  CAS  Google Scholar 

  • Truex, M., Becker, D., Simon, M., Oostrom, M., Rice, A., & Johnson, C. (2013). Soil vapor extraction system optimization, transition, and closure guidance (PNNL-21843).

  • Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225–1231. doi:10.1016/S0895-4356(96)00002-9.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 1–20. doi:10.5402/2011/402647.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Homam Seyed Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabour, M.R., Seyed Jalali, S.H. & Dezvareh, G. Comprehensive Model for Remediation of Sandy Soils Contaminated with Volatile Organic Compounds Using Thermal Enhancement of Soil Vapor Extraction Method. Water Air Soil Pollut 228, 239 (2017). https://doi.org/10.1007/s11270-017-3414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3414-5

Keywords

Navigation