Skip to main content
Log in

Perspectives of Quantitative Risk Assessment Studies for Giardia and Cryptosporidium in Water Samples

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A quantitative microbial risk assessment method can be used to evaluate infections probabilities for microorganisms in a specific place. The methodology provides suitable information to generate strategies focusing on health problems. Giardia cysts (GC) and Cryptosporidium oocysts (CO) are considered emerging pathogens that can infect human and animals by ingesting contaminated food or water, where food and water are transport vehicles for these parasites. Studies for GC and CO have reported occurrences for these parasites in water up to 100%, and some of these studies documented a number of cases, about 403,000 people, infected worldwide. This review is focused on compiling the most relevant works assessing the risk for GC and CO and their presence in different water samples that are susceptible for direct and indirect human consumption. The annual risk infection probability for these parasites has been reported from different water sources, with a range between 1 × 10−6 and 1, while the world standard regulation is 1 × 10−4. The infection probability depends not only on water quality but also on water treatment implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam, R. D. (2001). Biology of Giardia lamblia. Clinical Microbiology Reviews, 14(3), 447–475.

    Article  CAS  Google Scholar 

  • Ahmed, M. F. (2014). A model for prediction of microbial disease burden of water supply options in Bangladesh. Stamford Journal Microbiology, 4(1), 31–36.

    Google Scholar 

  • Ahmed, W., Vieritz, A., Goonetilleke, A., & Gardner, T. (2010). Health risk from the use of roof-harvested rainwater in Southeast Queensland, Australia, as potable or nonpotable water, determined using quantitative microbial risk assessment. Applied and Environmental Microbiology, 76(22), 7382–7391.

    Article  CAS  Google Scholar 

  • Ahmed, W., Brandes, H., Gyawali, P., Sidhu, J. P. S., & Toze, S. (2014). Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR. Water Research, 53, 361–369.

    Article  CAS  Google Scholar 

  • An, W., Zhang, D., Xiao, S., & Yang, M. (2012). Risk assessment of Giardia in rivers of southern China based on continuous monitoring. Journal of Environmental Science, 24(2), 309–313.

    Article  CAS  Google Scholar 

  • Andersen, S.T. (2015) Urban flooding and health risk analysis by use of quantitative microbial risk assessmentlimitations and improvements. PhD thesis, Technical University of Denmark, Lyngby, Denmark

  • Armon, R., Gold, D., Brodsky, M., & Oron, G. (2002). Surface and subsurface irrigation with effluents of different qualities and presence of Cryptosporidium oocysts in soil and on crops. Water Science and Technology, 46(3), 115–122.

    CAS  Google Scholar 

  • Asano, T., & Cotruvo, J. A. (2004). Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Research, 38, 1941–1951.

    Article  CAS  Google Scholar 

  • Ashbolt, N. (2015). Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports, 2(1), 95–106.

    Article  CAS  Google Scholar 

  • Ashbolt, N., Schoen, M., Soller, J., & Roser, J. (2010). Predicting pathogen risks to aid beach management: the real value of quantitative microbial risk assessment (QMRA). Water Research, 44, 4692–4703.

    Article  CAS  Google Scholar 

  • Balderrama-Carmona, A. P., Gortáres-Moroyoqui, P., Álvarez-Valencia, L. H., Castro-Espinoza, L., Balderas-Cortés, J. J., Mondaca-Fernández, I., Chaidez-Quiroz, C., & Meza-Montenegro, M. M. (2014). Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and airborne dust samples. International Journal of Infectious Diseases, 26, 123–127.

    Article  Google Scholar 

  • Balderrama-Carmona, A. P., Gortáres-Moroyoqui, P., Álvarez-Valencia, L. H., Castro-Espinoza, L., Balderas-Cortés, J. J., Mondaca-Fernández, I., Chaidez-Quiroz, C., & Meza-Montenegro, M. M. (2015). Quantitative microbial risk assessment of Cryptosporidium and Giardia in well water from a native community of Mexico. International Journal of Environmental Health Research, 25(5), 570–582.

    CAS  Google Scholar 

  • Balthazard-Accou, K., Fifi, U., Agnamey, P., Casimir, J. A., Brasseur, P., & Emmanuel, E. (2014). Influence of ionic strength and soil characteristics on the behavior of cryptosporidium oocysts in saturated porous media. Chemosphere, 103, 114–120.

    Article  CAS  Google Scholar 

  • Barbeau, B., Payment, P., Coallier, J., Clement, B., & Prevost, M. (2000). Evaluating the risk of infection from the presence of Giardia and Cryptosporidium in drinking water. Quantitative Microbiology, 2(1), 37–54.

    Article  Google Scholar 

  • Barwick, R., Mohammed, H., White, M., & Bryant, R. (2003). Prevalence of Giardia spp. and Cryptosporidium spp. on dairy farms in southeastern New York state. Preventive Veterinary Medicine, 59, 1–11.

    Article  CAS  Google Scholar 

  • Betancourt, W., Duarte, D., Vásquez, R., & Gurian, P. (2014). Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: estimation of bathing-associated disease risks. Marine Pollution Bulletin, 85(1), 268–273.

    Article  CAS  Google Scholar 

  • Burnet, J. B., Penny, C., Ogorzaly, L., & Cauchie, H. M. (2014). Spatial and temporal distribution of cryptosporidium and giardia in a drinking water resource: implications for monitoring and risk assessment. Science of Total Environment, 472, 1023–1035.

    Article  CAS  Google Scholar 

  • Caccio, S., & Widmer, G. (2014). Cryptosporidium: parasite and disease. Wein: Springer.

    Book  Google Scholar 

  • Caccio, S., De Giacomo, M., Aulicino, F., & Pozio, E. (2003). Giardia cysts in wastewater treatment plants in Italy. Applied and Environmental Microbiology, 69, 3393–3398.

    Article  CAS  Google Scholar 

  • Caccio, S., Thompson, R., McLauchlin, J., & Smith, H. (2005). Unravelling cryptosporidium and giardia epidemiology. Trends in Parasitology, 21(9), 430–437.

    Article  CAS  Google Scholar 

  • Calabrese, E., Barnes, R., Staneck III, E., Pastides, H., Gilbert, C. E., Veneman, P., et al. (1989). How much soil do young children ingest: an epidemiologic study. Regulatory Toxicology and Pharmacology, 10(2), 123–137.

    Article  CAS  Google Scholar 

  • Cann, K., Thomas, D., Salmon, R., Win-Jones, A. P., & Kay, D. (2013). Extreme water-related weather events and waterborne disease. Epidemiology and Infection, 141, 671–686.

    Article  CAS  Google Scholar 

  • Carmena, D., Aguinagalde, X., Zigorraga, C., Fernández-Crespo, J. C., & Ocio, J. A. (2006). Presence of Giardia cysts and Cryptosporidium oocysts in drinking water supplies in northern Spain. Journal of Applied Microbiology, 102(3), 619–629.

    Article  Google Scholar 

  • Carlander, A., Schonning C., .Stenstrom, T.A. (2009). Energy forest irrigated with wastewater: a comparative microbial risk assessment. Journal of Water and Health, 7, 413-433.

  • Castro-Hermida, J., García-Presedo, I., Almeida, A., & Mezo, M. (2010). Cryptosporidium and Giardia detection in water bodies of Galicia, Spain. Water Research, 44(20), 5887–5896.

    Article  CAS  Google Scholar 

  • Castro-Hermida, J., García-Presedo, I., Almeida, A., González-Warleta, M., Correia Da Costa, J. M., & Mezo, M. (2011). Cryptosporidium spp. and Giardia duodenalis in two areas of Galicia (NW Spain). Science of Total Environment, 409(13), 2451–2459.

    Article  CAS  Google Scholar 

  • CDC (2012) Global water, Sanitation and Hygiene (WASH). Center of Disease Control and Prevention web. https://www.cdc.gov/healthywater/global/wash_statistics.html#two. Accessed 10 November 2016.

  • Cedillo-Rivera, R., Leal, Y.A., Yépez-Mulia, L., Gómez-Delgado, A., Ortega-Pierres, G., Tapia-Conyer, R., Muñoz, O. (2009). Seroepidemiology of Giardiasis in Mexico. American Journal of Tropical Medicine and Hygiene, 80, 6–10.

  • Chaidez, C., Soto, M., Gortáres, P., & Mena, K. (2005). Occurrence of Cryptosporidium and Giardia in irrigation water and its impact on the fresh produce industry. International Journal of Environmental Health Research, 15, 339–345.

    Article  Google Scholar 

  • Chen, H., & Hoover, D. G. (2003). Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology, 87(1–2), 161–117.

    Article  Google Scholar 

  • Cheng, A., Lucy, F., Graczyk, T., Broaders, M. A., Tamang, L., & Connolly, M. (2009). Fate of Cryptosporidium parvum and Cryptosporidium hominis oocysts and Giardia duodenalis cysts during secondary wastewater treatments. Parasitolology Research, 105, 689–696.

    Article  Google Scholar 

  • Conlan, A. J. K., Line, J. E., Hiett, K., Coward, C., Van Diemen, P. M., Stevens, M. P., et al. (2011). Transmission and dose–response experiments for social animals: a reappraisal of the colonization biology of Campylobacter jejuni in chickens. Journal of the Royal Society Interface, 8, 1720–1735.

    Article  Google Scholar 

  • Coupe, S., Delabre, K., Pouillot, R., Houdart, S., Santillana-Hayat, M., & Derouin, F. (2006). Detection of Cryptosporidium, Giardia and Enterocytozoon bieneusi in surface water, including recreational areas: a one-year prospective study. FEMS Immunol and Medical Microbiology, 47(3), 351–359.

    Article  CAS  Google Scholar 

  • Craun, G., Hubbs, S., Frost, F., Calderon, R. L., & Via, S. H. (1998). Waterborne outbreaks of cryptosporidiosis. American Water Works Association Journal, 90, 81–91.

    CAS  Google Scholar 

  • Cummins, E., Kennedy, R., & Cormican, M. (2010). Quantitative risk assessment of Cryptosporidium in tap water in Ireland. Science of Total Environment, 408, 740–753.

    Article  CAS  Google Scholar 

  • Daly, E., Roy, S., Blaney, D., Manning, J., et al. (2009). Outbreak of giardiasis associated with a community drinking-water source. Epidemiology Infect, 15, 1–10.

    Google Scholar 

  • De Keuckelaere, A., Jacxsens, L., Amoah, P., et al. (2015). Zero risk does not exist: lessons learned from microbial risk assessment related to use of water and safety of fresh produce. Compr Rev Food Sci F. doi:10.1111/1541-4337.12140.

    Google Scholar 

  • Donovan, E., Unice, K., Roberts, J., et al. (2008). Risk of gastrointestinal disease associated with exposure to pathogens in the water of the lower Passaic River. Applied and Environmental Microbiology, 74, 994–100.

    Article  CAS  Google Scholar 

  • Duncanson, M., Russell, N., Weinstein, P., et al. (2000). Rates of notified cryptosporidiosis and quality of drinking water supplies in Aotearoa, New Zealand. Water Research, 34, 3804–3812.

    Article  CAS  Google Scholar 

  • Dupont, H., Chappell, C., Sterlig, L., Okhuysen, P., et al. (1995). The infectivity of C. parvum in healthy volunteers. New England Journal of Medicine, 332, 855–859.

    Article  CAS  Google Scholar 

  • Farber, J. M., Rossb, W. H., & Harwig, J. (1996). Health risk assessment of Listeria monocytogenes in Canada. International Journal of Food Microbiology, 30, 145–156.

    Article  CAS  Google Scholar 

  • Faubert, G. (2000). Immune response to Giardia duodenalis. Clinical Microbiology Reviews, 13(1), 35–54.

    Article  CAS  Google Scholar 

  • Gale, P. (2001). Developments in microbiological risk assessment for drinking water. Journal of Applied Microbiology, 91, 191–205.

    Article  CAS  Google Scholar 

  • García, A., Yanko, W., Batzer, G., & Widmer, G. (2002). Giardia cysts in tertiary-treated wastewater effluents: are they infective? Water Environmental Research, 74, 541–544.

    Article  Google Scholar 

  • Gerwig, G., van Kuik, A., Leeflang, B., Kamerling, J. P., Vliegenthart, J. F., Karr, C. D., & Jarroll, E. L. (2002). The Giardia intestinalis filamentous cyst wall contains a novel β (1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology, 12(8), 499–505.

    Article  CAS  Google Scholar 

  • Gortáres-Moroyoqui, P., Castro-Espinoza, L., Naranjo, J., Karpiscak, M. M., Freitas, R. J., & Gerba, C. P. (2011). Microbiological water quality in a large irrigation system: El Valle del Yaqui, Sonora México. Journal of Environmental Science and Health, 46(14), 1708–1712.

    Article  Google Scholar 

  • Haas, C., Rose, J., & Gerba, C. (1999). Quantitative microbial risk assessment. New York: John Wiley & Sons.

    Google Scholar 

  • Helmreich, B., & Horn, H. (2009). Opportunities in rainwater harvesting. Desalination, 248, 118–124.

    Article  CAS  Google Scholar 

  • Heyworth, J., Glonek, G., Maynard, E., Baghurst, P. A., & Finlay-Jones, J. (2006). Consumption of untreated tank rainwater and gastroenteritis among young children in South Australia. International Journal of Epidemioloy, 35(4), 1051–1058.

    Article  CAS  Google Scholar 

  • Hoornstra, E., Hartog, B. (2003). A quantitative risk assessment on Cryptosporidium in food and water. Teagasc web. http://www.teagasc.ie/publications/2003/conferences/cryptosporidiumparvum/paper05.asp

  • Hu, T. (2002). Detection of Giardia cysts and Cryptosporidium oocysts in Central Taiwan rivers by immunofluorescence assay. Journal of Microbiology, Immunology and Infection, 35(1), 68–70.

    Google Scholar 

  • Hunter, P., Anderle de Sylor, M., Risebro, L., Nichols, G., Kay, D., & Hartemann, P. (2011). Quantitative microbial risk assessment of cryptosporidiosis and giardiasis from very small private water supplies. Risk Analysis, 31(2), 228–236.

    Article  Google Scholar 

  • Jaidi, K., Barbeau, B., Carriere, A., Desjardins, R., & Prévost, M. (2009). Including operational data in QMRA model: development and impact of model inputs. Journal of Water and Health, 7(1), 77–95.

    Article  Google Scholar 

  • Karanis, P., Sotiriadoua, I., Kartashevc, V., Kourenti, C., Tsvetkova, N., & Stojanova, K. (2006). Occurrence of Giardia and Cryptosporidium in water supplies of Russia and Bulgaria. Environmental Research, 102, 260–271.

    Article  CAS  Google Scholar 

  • Khaldi, S., Ratajczak, M., Gargala, G., Fournier, M., Berthe, T., Favennec, L., & Dupont, J. P. (2011). Intensive exploitation of a karst aquifer leads to Cryptosporidium water supply contamination. Water Research, 45, 2906–2914.

    Article  CAS  Google Scholar 

  • Korich, D., Mead, J., Madore, M., Sinclair, N. A., & Sterling, C. R. (1990). Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Applied and Environmental Microbiology, 56(5), 1423–1428.

    CAS  Google Scholar 

  • Koken, E., Darnault, C.G.J., Jacobson, A.R., Powelson, D., Hendrickson, W. (2013). Quantification of Cryptosporidium parvum in natural soil matrices and soil solutions using qPCR. Journal of Microbiological Methods, 92, 135–144.

  • Kramer, M., Quade, G., Hartemann, P., & Exner, M. (2001). Waterborne diseases in Europe 1986–1996. American Water Works Association Journal, 93, 48–53.

    Google Scholar 

  • Lammerding, A., & Paoli, G. (1997). Quantitative risk assessment: an emerging tool for emerging foodborne pathogens. Emerging Infection Disseases, 3, 483–487.

    Article  CAS  Google Scholar 

  • Leitch, G.J., He, Q. (2011) Cryptosporidiosis-an overview. The Journal of Biomedical Research, 25, 1-16.

  • Lim, Y., & Ahmad, R. (2004). Occurrence of Giardia cysts and Cryptosporidium oocysts in the Temuan orang Asli (aborigine) river system. The Southeast Asian Journal of Tropical Medicine and Public Health, 35(4), 801–810.

    CAS  Google Scholar 

  • Loganthan, S., Yang, R., Bath, A., Gordon, C., & Ryan, U. (2012). Prevalence of Cryptosporidium species in recreational versus non-recreational water sources. Experimental Parasitology, 131(4), 399–403.

    Article  Google Scholar 

  • Luján, H., & Svärd, S. (2011). Giardia: A Model Organism. Wien: Springer.

    Book  Google Scholar 

  • Magaña, D. (2006). Presencia y Estimación de Riesgo de Cryptosporidiumy Giardia en Agua de Mar de Playas del Estado de Sinaloa. Dissertion, Centro de Investigacion en Alimentacion y Desarrollo.

  • Maikai, B., Baba-Onoja, E., & Elisha, I. (2013). Contamination of raw vegetables with Cryptosporidium oocysts in markets within Zaria metropolis, Kaduna state, Nigeria. Food Control, 31, 45–48.

    Article  Google Scholar 

  • Man, H., van den Berg, H. H. J. L., Leenen, E. J. T. M., et al. (2014). Quantitative assessment of infection risk from exposure to waterborne pathogens in urban floodwater. Water Research, 48, 90–99.

    Article  Google Scholar 

  • Medema, G., & Schijven, J. (2001). Modeling the sewage discharge and dispersion of Cryptosporidium and Giardia in surface water. Water Research, 18, 4307–4316.

    Article  Google Scholar 

  • Moon, H., Chen, J. J., Gaylor, D. W., & Kode, R. L. (2004). A comparison of microbial dose–response models fitted to human data. Regulatory Toxicology and Pharmacology, 40, 177–184.

    Article  CAS  Google Scholar 

  • Moon, H., Kim, H.J., Chen, J.J., Kodell, R.L.(2005) Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness. Risk Analysis 25(5), 1147-1159.

  • Mota, A., Mena, K., Soto-Beltran, M., Tarwater, P., & Cháidez, C. (2009). Risk assessment of Cryptosporidium and Giardia in water irrigation fresh produce in Mexico. Journal of Food Protection, 72, 2184–2188.

    Article  Google Scholar 

  • Nydam, D., & Mohammed, H. (2005). Quantitative risk assessment of cryptosporidium species infection in dairy calves. Journalof Dairy Science, 88, 3932–3943.

    Article  CAS  Google Scholar 

  • Nygard, K., Schimmer, B., Sobstad, O., Walde, A., Tveit, I., Langeland, N., et al. (2006). A large community outbreak of waterborne giardiasis—delayed detection in a non-endemic urban area. BioMed Central Public Health, 6, 141.

    Article  Google Scholar 

  • Olivas-Enríquez, E., Flores-Margez, J., Serrano-Alamillo, M., Soto-Mejía, E., Iglesias-Olivas, J., Salazar-Sosa, E., & Fortis-Hernández, M. (2011). Indicadores fecales y patógenos en agua descargada al Río Bravo. Terra Latinoamericana, 29, 449–457.

    Google Scholar 

  • Olivieri, A. W., Seto, E., Cooper, R. C., Cahn, M. D., Colford, J., Crook, J., et al. (2014). Risk-based review of Californias water-recycling criteria for agricultural irrigation. Journal of Environmental Engineering. doi:10.1061/(ASCE)EE.1943-7870.0000833.

    Google Scholar 

  • Onichandran, S., Kumar, T., & Lim, Y. (2013). Waterborne parasites and physico-chemical assessment of selected lakes in Malaysia. Parasitology Research, 112, 4185–4191.

    Article  Google Scholar 

  • Perz, J. F., Ennever, F. K., & Le Blancq, S. M. (1998). Cryptosporidium in tap water. American Journal of Epidemiology, 147(3), 289–301.

    Article  CAS  Google Scholar 

  • Pond, K., Rueedi, J., Pedley, S. (2004.) Pathogens in drinking water sources. Microrisk web. www.microrisk.com/uploads/pathogens_in_drinking_water_sources.pdf

  • Prystajecky, N., Huck, P. M., Schreier, H., & Isaac-Renton, J. L. (2015). Assessment of Giardia and Cryptosporidium spp. as a microbial source tracking tool for surface water: application in a mixed-use watershed. Applied Environmental Microbiology, 80(8), 2328–2336.

    Article  Google Scholar 

  • Quintero-Betancourt, W., Gennaccaro, A., Scott, T., & Rose, J. (2003). Assessment of methods for detection of infectious Cryptosporidium oocysts and Giardia cysts in reclaimed effluents. Applied and Environmental Microbiology, 69, 5380–5388.

    Article  CAS  Google Scholar 

  • Razzolini, M., Weir, M., Matte, M., Matte, G. R., Fernandes, L. N., & Rose, J. B. (2011). Risk of Giardia infection for drinking water and bathing in a peri-urban area in Sao Paulo, Brazil. International Journal of Environmental Health Research, 21(3), 222–234.

    Article  Google Scholar 

  • Rendtorff, R. (1954). The experimental transmission of human intestinal protozoan parasites. American Journal of Hygiene, 59(2), 209–220.

    CAS  Google Scholar 

  • Rodriguez-Proteau, R., & Grant, R. (2005). Toxicity evaluation and human health risk assessment of surface and ground water contaminated by recycled hazardous waste materials. Handbook of Environmental Chemestry, 5, 133–189.

    Article  Google Scholar 

  • Rose, J., Haas, C., & Regli, S. (1991). Risk assessment and control of waterborne giardiasis. American Journal of Public Health, 81, 709–713.

    Article  CAS  Google Scholar 

  • Rose, J., Dickson, L., Farrah, S., & Carnahan, R. (1996). Removal of pathogenic and indicator microorganisms by a full-scale water reclamation facility. Water Research, 30, 2785–2797.

    Article  CAS  Google Scholar 

  • Rose, J., Huffman, D., & Gennaccaro, A. (2002). Risk and control of waterborne cryptosporidiosis. FEMS Microbiology Reviews, 26, 113–123.

    Article  CAS  Google Scholar 

  • Ryan, U., & Caccio, S. (2013). Zoonotic potential of Giardia. International of Journal Parasitology, 43, 943–956.

    Article  CAS  Google Scholar 

  • Ryu, H., & Abbaszadegan, M. (2008). Long-term study of Cryptosporidium and Giardia occurrence and quantitative microbial risk assessment in surface waters of Arizona in the USA. Journal of Water Health, 06, 263–273.

    Article  Google Scholar 

  • Ryu, H., Alum, A., Mena, K., & Abbaszadegan, M. (2007). Assessment of the risk of infection by Cryptosporidium and Giardia in non-potable reclaimed water. Water Science and Technology, 55(1–2), 283–290.

    Article  CAS  Google Scholar 

  • Sato, M., Galvani, A., Padula, J., Nardocci, A. C., Lauretto, M., Razzolini, M., & Hachich, E. (2013). Assessing the infection risk of Giardia and Cryptosporidium in public drinking water delivered by surface water systems in Sao Paulo state, Brazil. Science of Total Environment, 442, 389–396.

    Article  CAS  Google Scholar 

  • Schets, F., van Wijnen, J., Schijven, J., Schoon, H., & de Roda Husman, A. M. (2008). Monitoring of waterborne pathogens in surface waters in Amsterdam, the Netherlands, and potential health risk associated with exposure to Cryptosporidium and Giardia in these waters. Applied and Environmental Microbiology, 74(7), 2069–2078.

    Article  CAS  Google Scholar 

  • Schijven, J., & de Roda, A. (2006). A survey of diving behavior and accidental water ingestion among Dutch occupational and sport divers to assess the risk of infection with waterborne pathogenic microorganisms. Environmental Health Perspectives, 1, 712–717.

    Article  Google Scholar 

  • Schroeder, C., Jensen, E., & Miliotis, M. (2006). Microbial risk assessment. In S. Simjee (Ed.), Infectious disease: foodborne diseases (pp. 435–455). Totowa: Humana Press.

  • Shibata, T., & Solo-Gabriele, H. (2012). Quantitative microbial risk assessment of human illness from exposure to marine beach sand. Environmental Science and Technology, 46, 2799–2805.

    Article  CAS  Google Scholar 

  • Shultz, C., & Okun, D. (1984). Surface water treatment for communities in developing countries. London: John Wiley & Sons.

  • Signor, R., & Ashbolt, N. (2009). Comparing probabilistic microbial risk assessment for drinking water against daily rather than annualized infection probability targets. Journal of Water Health, 7, 535–543.

    Article  CAS  Google Scholar 

  • Smith, H., & Nichols, R. (2006). Cryptosporidium. In Y. Ortega (Ed.), Infection disease: foodborne parasites (pp. 233–276). GA: Editorial Board.

    Google Scholar 

  • Smith, H., & Rose, J. (1998). Waterborne cryptosporidiosis: current status. Parasitology Today, 14, 14–22.

    Article  CAS  Google Scholar 

  • Soller, J., Bartrand, T., Ashbolt, N., Ravenscroft, J., & Wade, T. J. (2010). Estimating the primary etiologic agents in recreational freshwaters impacted by human sources of faecal contamination. Water Research, 44(16), 4736–4747.

  • Solo-Gabriele, H., LeRoy, A., Fitzgerald, J., Dubón, J.M., Michelle S., Karas, M., Paler, C. (1998). Occurrence of Cryptosporidium oocysts and Giardia cysts in water supplies of San Pedro Sula, Honduras. Pan American Journal of Public Health, 4, 398-400.

  • Spanakos, G., Biba, A., Mavridou, A., & Karanis, P. (2015). Occurrence of cryptosporidium and giardia in recycled waters used for irrigation and first description of Cryptosporidium parvum and C. muris in Greece. Parasitology Research, 114, 1803–1810.

    Article  Google Scholar 

  • Staneck III, E., Calabrese, E., Barnes, R., & Pekow, P. (1997). Soil ingestion in adults—results of a second pilot study. Ecotoxicology Environmental Safety, 36, 249–257.

    Article  Google Scholar 

  • Sunger, N., & Haas, C. H. (2015). Quantitative microbial risk assessment for recreational exposure to water bodies in Philadelphia. Water Environmental Research, 87(3), 211–222.

    Article  CAS  Google Scholar 

  • Teunis, P., & Havelaar, A. (2002). Risk assessment for protozoan parasites. International Biodeterioration and Biodegradation, 50(3–4), 185–193.

    Article  Google Scholar 

  • Teunis, P., Medema, G., Kruidenier, L., & Havelaar, A. (1997). Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from surface water source. Water Research, 31, 1333–1346.

    Article  CAS  Google Scholar 

  • USEPA. (1986). Ambient water quality criteria for bacteria. Washington: EPA.

    Google Scholar 

  • USEPA (2013) Human Health Risk Assessment. Environmental Protection Agency web. http://epa.gov/riskassessment/index.htm

  • Vázquez, T., & Campos, R. (2009). Giardiasis. La parasitosis más frecuente a nivel mundial. Revista del Centro de Investigación de la Universidad LaSalle, 8(31), 75–90.

    Google Scholar 

  • VROM. (2001). Waterleidingbesluit (Drinking water decree). The Hague: Ministry of Housing, Physical Planning and the Environment.

    Google Scholar 

  • WHO. (2003). Quantifying selected major risks to health, the world health report 2002. Geneva: World Health Organization.

    Google Scholar 

  • Westrell, T., Bergtedt, O., Strenstrom, T.A., Ashbolt, N.J. (2003). A theoretical approach to assess microbial risks due to failures in drinking water systems. International Journal of Environmental Health Research, 13, 181 – 197.

  • Wicki, M., Svoboda, P., & Tanner, M. (2009). Occurrence of Giardia lamblia in recreational streams in Basel-Landschaft, Switzerland. Environmental Research, 109, 524–527.

    Article  CAS  Google Scholar 

  • Willis, J., McClure, J., Davidson, J., McClure, C., & Greenwood, S. J. (2013). Global occurrence of Cryptosporidium and Giardia in shellfish: should Canada take a closer look? Food Research International, 52(1), 119–135.

    Article  Google Scholar 

  • Xiao, L., & Cama, V. (2006). Cryptosporidum and cryptosporidiosis. In Y. Ortega (Ed.), Foodborne parasites (pp. 57–108). GA: Editorial Board.

    Chapter  Google Scholar 

  • Xiao, G., Qiu, Z., Qi, J., Chen, J., Liu, F., Liu, W., et al. (2013). Occurrence and potential health risk of Cryptosporidium and Giardia in the Three Gorges reservoir, China. Water Research, 47(7), 2431–2445.

    Article  CAS  Google Scholar 

  • Yang, Z., Jiao, X., Li, P., Pan, Z., Huang, J., Gu, R., et al. (2009). Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature. Food Microbiology., 26(6), 606–614.

    Article  CAS  Google Scholar 

  • Zilberman, A., Zimmels, Y., Starosvetsky, J., Zuckerman, U., & Armon, R. (2009). A two-phase separation method for recovery of Cryptosporidium oocysts from soil samples. Water Air and Soil Pollution, 203(1), 325–334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Secretary of Public Education (SEP-PROMEP) project entitled “Study of Emerging Pollutants and Ecotoxicology” of the Thematic Network of Researchers and Academic Bodies for the Study of Emerging Pollutants and Ecotoxicology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Gortáres-Moroyoqui.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balderrama-Carmona, A.P., Gortáres-Moroyoqui, P., Álvarez, L.H. et al. Perspectives of Quantitative Risk Assessment Studies for Giardia and Cryptosporidium in Water Samples. Water Air Soil Pollut 228, 185 (2017). https://doi.org/10.1007/s11270-017-3333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3333-5

Keywords

Navigation