Skip to main content
Log in

Design and assessment of stream–wetland systems for nutrient removal in an urban watershed of China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Constructed wetlands are typical best management practices (BMPs) often used to reduce nutrient loads in streams. Evaluating the effectiveness of wetland design on nutrient removal is essential to assist watershed managers in optimal design of BMP dimensions and placement. In this study, we assess performance of two constructed wetland systems (comprising of nine wetlands) installed in downstream of Longhongjian Stream in Hangzhou City, China. These wetland systems are monitored and evaluated for their effects on nutrient removal, particularly TN, NO3-N, TP, and PO4-P. Based on wetland input–output metrics, removal efficiency (RE) is used to quantify wetland system. Results show that both wetland systems effectively removed nutrients, with RE as high as 45% of TN, 57% of NO3-N, 78% of TP, and 86% of PO4-P. In general, nutrient removal efficiency is seasonally dependent, with better removal efficiency occurring during warmer seasons than others. Macrophyte uptake is a primary removal process in these wetlands. We observe that more wetlands working concurrently can provide a greater level of control on nutrients in lotic environments. Wetland design parameters play an important role in removal of nutrients in streams. Increasing flow volume and surface area of wetland, designing curvilinear shoreline, and longer flow paths can be used as design criteria for wetland systems aimed at nutrient removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Birgand, F., Wayne, S. R., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments—a literature review. Critical Reviews in Environmental Science and Technology, 37, 381–487.

    Article  CAS  Google Scholar 

  • Borin, M., & Tocchetto, D. (2007). Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters. Science of the Total Environment, 380, 38–47.

    Article  CAS  Google Scholar 

  • CCRH (Committee of Compiling Records of Hangzhou) (2014). Statistical yearbook of Hangzhou City. http://www.hangzhou.gov.cn/main/zjhz/hzgl/index.shtml. In Chinese.

  • Chang, N., Xuan, Z., Marimon, Z., Islam, K., & Wanielista, M. P. (2013). Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecological Engineering, 54, 66–76.

    Article  Google Scholar 

  • Chen, Y., Niu, Z., & Zhang, H. (2013). Eutrophication assessment and management methodology of multiple pollution sources of a landscape lake in North China. Environmental Science and Pollution Research, 20, 3877–3889.

    Article  CAS  Google Scholar 

  • Chen, L., Liu, F., Wang, Y., Li, X., Zhang, S., Li, Y., & Wu, J. (2015). Nitrogen removal in an ecological ditch receiving agricultural drainage in subtropical central China. Ecological Engineering, 82, 487–492.

    Article  Google Scholar 

  • Correll, D.L., (1997). Buffer zones and water quality protection: general principles. In: N. E. Haycock, T. P. Burt, K. Goulding, G. Pinay (Eds.), Buffer Zones: their processes and potential in water protection. Harpenden: Quest environmental, 7–20.

  • D’Arcy, B. J., McLean, N., Heal, K. V., & Kay, D. (2007). Riparian wetlands for enhancing the self-purification capacity of streams. Water Science and Technology, 56(1), 49–57.

    Article  Google Scholar 

  • Davis, T. W., Bullerjahn, G. S., & Tuttle, T. (2015). Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during planktothrix blooms in Sandusky Bay, Lake Erie. Environmental Science and Technology, 49(12), 7197–7207.

    Article  CAS  Google Scholar 

  • Debusk, T. A., Grace, K. A., & Dierberg, F. E. (2005). Treatment wetlands for removing phosphorus from agricultural drainage water. In E. J. Dunne, K. R. Reddy, & O. T. Car–ton (Eds.), Nutrient management in agricultural watersheds: a wetlands solution (pp. 167–178). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  • Di, H. J., & Cameron, K. C. (2002). The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use and Management, 18, 395–403.

    Article  Google Scholar 

  • Díaz, F. J., O’Geen, A. T., & Dahlgren, R. A. (2012). Agricultural pollutant removal by constructed wetlands: implications for water management and design. Agricultural Water Management, 104, 171–183.

    Article  Google Scholar 

  • Duffy, W. G., & Kahara, S. N. (2011). Wetland ecosystem services in California’s Central Valley and implications for the wetland reserve program. Ecological Applications, 21(3), S18–S30.

    Article  Google Scholar 

  • Dunne, E. J., Coveney, M. F., Marzolf, E. R., Hoge, V. R., Conrow, R., Naleway, R., Lowe, E. F., Battoe, L. E., & Inglett, P. W. (2013). Nitrogen dynamics of a large-scale constructed wetland used to remove excess nitrogen from eutrophic lake water. Ecological Engineering, 61, 224–234.

    Article  Google Scholar 

  • El-Sheikh, M. A., Saleh, H. I., El-Quosy, D. E., & Mahmoud, A. A. (2010). Improving water quality in polluated drains with free water surface constructed wetlands. Ecological Engineering, 36, 1478–1484.

    Article  Google Scholar 

  • Fan, X., Cui, B., Zhang, K., Zhang, Z., & Zhao, H. (2012). Construction of river channel–wetland networks for controlling water pollution in the Pearl River Delta, China. Clean: Soil, Air, Water, 40(10), 1027–1035.

    CAS  Google Scholar 

  • Filoso, S., Smith, S. M. C., Williams, M. R., & Palmer, M. A. (2015). The efficacy of constructed stream–wetland complexes at reducing the flux of suspended solids to Chesapeake Bay. Environmental Science and Technology, 49, 8986–8994.

    Article  CAS  Google Scholar 

  • Hayakawa, A., Ikeda, S., Tsushima, R., Ishikawa, Y., & Hidaka, S. (2015). Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena, 133, 486–494.

    Article  CAS  Google Scholar 

  • Haycock, N. E., & Pinay, G. (1993). Nitrate retention in grass and poplar vegetated buffer strips during the winter. Journal of Environmental Quality, 22, 273–278.

    Article  CAS  Google Scholar 

  • Hogan, D. M., & Walbridge, M. R. (2007). Best management practices for nutrient and sediment retention in urban stormwater runoff. Journal of Environmental Quality, 36, 386–395.

    Article  CAS  Google Scholar 

  • Jia, H., Sun, Z., & Li, G. (2014). A four-stage constructed wetland system for treating polluted water from an urban river. Ecological Engineering, 71, 48–55.

    Article  Google Scholar 

  • Jin, Z. F., Chen, L. X., Li, F. L., Pan, Z. Y., & Jin, M. T. (2015). Effects of water transfer on water quality and estimation of the pollutant fluxes from different sources into West Lake, Hangzhou City, China. Environmental Earth Sciences, 73, 1091–1101.

    Article  CAS  Google Scholar 

  • Johnson, C. A. (1991). Sediments and nutrient retention by freshwater wetlands: effects on surface water quality. CRC Critical Reviews in Environmental Control , 21, 491–565.

    Article  Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. New York: Lewis Publishers CRC Press.

    Google Scholar 

  • Kanyiginya, V., Kansiime, F., Kimwaga, R., & Mashauri, D. A. (2010). Assessment of nutrient retention by Natete wetland Kampala, Uganda. Physics and Chemistry of the Earth, 35, 657–664.

    Article  Google Scholar 

  • Kay, D., Francis, C., Edwards, A., Kay, C., McDonald, A., Lowe, N., Stapleton, C., Watkins, J., & Wyer, M. (2005). The efficacy of natural wastewater treatment systems in removing faecal indicator bacteria, report number 05/WW/21/7. London: UK Water Industry Research.

    Google Scholar 

  • Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2010). Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands, 30, 111–124.

    Article  Google Scholar 

  • Koch, B. J., Febria, C. M., Gevrey, M., Wainger, L. A., & Palmer, M. A. (2012). Nitrogen removal by stormwater management structures—a data synthesis. Journal of the American Water Resources Association, 50(6), 1594–1607.

    Article  Google Scholar 

  • Kourakos, G., & Harter, T. (2014). Vectorized simulation of groundwater flow and streamline transport. Environmental Modelling Software, 52, 207–221.

    Article  Google Scholar 

  • Kröger, R., Dunne, E. J., Novak, J., King, K. W., McClellan, E., Smith, D. R., Strock, J. S., Tomer, M. D., & Noe, G. B. (2013). Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use. Science of the Total Environment, 442, 263–274.

    Article  Google Scholar 

  • Li, X. Z., Jongman, R. H. G., Hu, Y. M., & Bu, R. C. (2005). Relationship between landscape structure metrics and wetland nutrient retention function: a case study of Liaohe Delta, China. Ecological Indicators, 5, 339–349.

    Article  Google Scholar 

  • Littlejohn, K. A., Poganski, B. H., Kröger, R., & Ramirez–Avila, J. J. (2014). Effectiveness of low-grade weirs for nutrient removal in an agricultural landscape in the lower Mississippi Alluvial Valley. Agricultural Water Management, 131, 79–86.

    Article  Google Scholar 

  • Lu, S., Zhang, P., Jin, X., Xiang, C., Gui, M., Zhang, J., & Li, F. (2009). Nitrogen removal from agricultural runoff by full-scale constructed wetland in China. Hydrobiologia, 621, 115–126.

    Article  CAS  Google Scholar 

  • Mahmoud M., Tawfik A. and El-Gohary F. (2010) Simultaneous organic and nutrient removal in a naturally ventilated biotower treating presettled municipal wastewater. Journal of Environmental Engineering, 136(3), 301-307

  • Maynard, J. J., O’Geen, A. T., & Dahlgren, R. A. (2009). Spatial relationships of phosphorus sorption in a seasonally saturated constructed wetland soil. Soil Science Society of America Journal, 73, 1741–1753.

    Article  CAS  Google Scholar 

  • Maynard, J. J., O'Geen, A. T., & Dahlgren, R. A. (2009). Bioavailability and fate of phosphorus in constructed wetlands receiving agricultural runoff in the San Joaquin Valley, California. Journal of Environmental Quality, 38(1), 360–372.

  • McNett, J. K., Hunt, W. F., & Osborne, J. A. (2010). Establishing stormwater BMP evaluation metrics based upon ambient water quality associated with benthic macroinvertebrate populations. Journal of Environmental Engineering, 136(5), 535–541.

    Article  CAS  Google Scholar 

  • McNett, J. K., Hunt, W. F., & Davis, A. P. (2011). Influent pollutant concentrations as predictors of effluent pollutant concentrations for Mid-Atlantic bioretention. Journal of Environmental Engineering, 137(9), 790–799.

    Article  CAS  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35, 25–33.

    Article  Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2007). Wetlands (4th ed.). Hoboken: Wiley.

    Google Scholar 

  • Monaghan, R. M., Wilcock, R. J., Smith, L. C., Tikkisetty, B., Thorrold, B. S., & Costall, D. (2007). Linkages between land management activities and water quality in an intensively farmed catchment in southern New Zealand. Agriculture, Ecosystems and Environment, 118, 211–222.

    Article  Google Scholar 

  • Mugisha, P., Kansiime, F., Mucunguzi, P., & Kateyo, E. (2007). Wetland vegetation and nutrient retention in Nakivubo and Kirinya wetlands in the Lake Victoria basin of Uganda. Physics and Chemistry of the Earth, 32, 1359–1365.

    Article  Google Scholar 

  • Nas, S. S., & Nas, E. (2009). Water quality modeling and dissolved oxygen balance in streams: a point source streeter–phelps application in the case of the Harsit Stream. Clean: Soil, Air, Water, 37(1), 67–74.

    CAS  Google Scholar 

  • O’Geen, A. T., Budd, R., Gan, J., Maynard, J. J., Parikh, S. J., & Dahlgren, R. A. (2010). Mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Advances in Agronomy, 108, 1–76.

    Article  Google Scholar 

  • Poach, M. E., Hunt, P. G., Reddy, G. B., Stone, K. C., Johnson, M. H., & Grubbs, A. (2007). Effect of intermittent drainage on swine wastewater treatment by marsh–pond–marsh constructed wetlands. Ecological Engineering, 30, 43–50.

    Article  Google Scholar 

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Reinhardt, M., Muller, B., Gachter, R., & Wehrli, B. (2006). Nitrogen removal in a small constructed wetland: an isotope mass balance approach. Environmental Science and Technology, 40, 3313–3319.

    Article  CAS  Google Scholar 

  • Richardson, C. J., Flanagan, N. E., Ho, M., & Pahl, J. W. (2011). Integrated stream and wetland restoration: a watershed approach to improved water quality on the landscape. Ecological Engineering, 37, 25–39.

    Article  Google Scholar 

  • Rosenquist, S. E., Hession, W. C., Eick, M. J., & Vaughan, D. H. (2010). Variability in adsorptive phosphorus removal by structural stormwater best management practices. Ecological Engineering, 36(5), 664–671.

  • Scholes, L., Revitt, M., & Ellis, J. B. (2008). A systematic approach for the comparative assessment of stormwater pollutant removal potentials. Journal of Environmental Management, 88, 467–478.

    Article  CAS  Google Scholar 

  • Scholz, M., & Hedmark, A. (2010). Constructed wetlands treating runoff contaminated with nutrients. Water, Air, and Soil Pollution, 205, 323–332.

    Article  CAS  Google Scholar 

  • Schueler, T. R. (1992). Design of stormwater wetland systems: guidelines for creating diverse and effective stormwater wetlands in the Mid-Atlantic Region (p. 134). Wahsingtion: Metropolitan Council of Governments.

    Google Scholar 

  • Schueler, T. R., Kumble, P. A., & Heraty, M. A. (1992). A current assessment of urban best management practices. United States Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Assessment & Watershed Protection Division. Washington DC.

  • SEPA (State Environmental Protection Administration), Editorial board (2002). Monitoring method of water and waste water. China Environmental Science Press.

  • Shan, N., Ruan, X. H., Xu, J., & Pan, Z. R. (2014). Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China. Ecological Modelling, 276(24), 51–63.

    Article  Google Scholar 

  • Smith, E., Gordon, R., Madani, A., & Stratton, G. (2006). Year-round treatment of dairy wastewater by constructed wetlands in Atlantic Canada. Wetlands, 26, 349–357.

    Article  Google Scholar 

  • Spence, P. L., & Jordan, S. J. (2013). Effects of nitrogen inputs on freshwater wetland ecosystem services: a Bayesian network analysis. Journal of Environmental Management, 124, 91–99.

    Article  CAS  Google Scholar 

  • Spieles, D. J., & Mitsch, J. J. (1999). The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecological Engineering, 14, 77–91.

    Article  Google Scholar 

  • Tournebize, J., Chaumont, C., Fesneau, C., Guenne, A., Vincen, B., Garnier, J., & Mander, Ü. (2015). Long-term nitrate removal in a buffering pond–reservoir system receiving water from an agricultural drained catchment. Ecological Engineering, 80, 32–45.

    Article  Google Scholar 

  • Tu, Y. T., Chiang, P. C., Yang, J., Chen, S. H., & Kao, C. M. (2014). Application of a constructed wetland system for polluted stream remediation. Journal of Hydrology, 510, 70–78.

    Article  CAS  Google Scholar 

  • USEPA (1995). Handbook of constructed wetlands. 5 volumes, USEPA Region III with USDA, NRCS, ISBN 0–16–052999–9.

  • USEPA (2001). Methods for collection, storage and manipulation of sediment for chemical and toxicological analyses: technical manual. Chicago: EPA Region V [EPA–823–B–01–002].

  • Uusitalo, R., & Elknom, P. (2003). Phosphorus in runoff assessed by anion exchange resin extraction and an algal assay. Journal of Environmental Quality, 32, 633–641.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 48–65.

    Article  CAS  Google Scholar 

  • Wang, Z., Wu, J., Madden, M., & Mao, D. (2012). China’s wetlands: conservation plans and policy impacts. Ambio, 41(7), 782–786.

    Article  Google Scholar 

  • Wellen, C., Arhonditsis, G. B., Long, T., & Boyd, D. (2014). Quantifying the uncertainty of nonpoint source attribution in distributed water quality models: a Bayesian assessment of SWAT’s sediment export predictions. Journal of Hydrology, 519, 3353–3368.

    Article  Google Scholar 

  • Yang, G., & Best, E. P. H. (2015). Spatial optimization of watershed management practices for nitrogen load reduction using a modeling–optimization framework. Journal of Environmental Management, 161, 252–260.

    Article  CAS  Google Scholar 

  • Yang, R., & Cui, B. (2012). A wetland network design for water allocation based on environmental flow requirements. Clean: Soil, Air, Water, 40(10), 1047–1056.

    CAS  Google Scholar 

  • Younger, P. L. (2014). Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system Robin Henderson. Water Research, 55, 74–82.

    Article  CAS  Google Scholar 

  • Zedler, J. B. (2003). Wetlands at your service: reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment, 1, 65–72.

    Article  Google Scholar 

  • Zhang, D., Gersberg, R. M., & Keat, T. S. (2009). Constructed wetlands in China. Ecological Engineering, 35(10), 1367–1378.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major National Science and Technology Project of Ministry of Science and Technology of China (grant no. 2013ZX07310-001) and the Innovative Research Project for High-Level Researchers of Putuo District, Shanghai, China (grant no. 2014-A-18). We thank Minghai Ma, Yueya Chang, He Cui, Le Yang, Tinhui Zhang, Qi Chen, and Wen Zhang for assistance in sampling and analysis. Thanks to Weida Landscape Co., Ltd. for the assistance in sampling and investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy O. Randhir or Minsheng Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Randhir, T.O. & Huang, M. Design and assessment of stream–wetland systems for nutrient removal in an urban watershed of China. Water Air Soil Pollut 228, 139 (2017). https://doi.org/10.1007/s11270-017-3312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3312-x

Keywords

Navigation