Skip to main content
Log in

Comparative Photocatalytic Performance on the Degradation of 2-Naphthol Under Simulated Solar Light Using α-Bi4V2O11 Synthesized by Solid-State and Co-precipitation Methods

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this investigation, the photocatalytic activity of α-Bi4V2O11 in the degradation of 2-naphthol under simulated solar light was evaluated. Bismuth vanadate α-Bi4V2O11 was synthesized by the solid-state reaction method and by co-precipitation in aqueous media, with the aim of comparing their performance in the photodegradation of the aromatic pollutant. The latter method (co-precipitation) has not been previously reported for the synthesis of α-Bi4V2O11. Structural evolution of the oxides precursors was determined by X-ray diffraction. Morphology and optical properties of the solids were analyzed by scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (UV-vis), respectively. The results showed that at 800 °C, only α-Bi4V2O11 was formed in both preparations. The SEM micrographs revealed that the powders were composed of agglomerates with sizes between 0.8–2 μm for those synthesized by co-precipitation and 2–10 μm for those obtained by solid-state reaction. The optical properties indicated that α-Bi4V2O11 was activated with visible light during the photocatalytic process. The photocatalytic degradation of 2-naphthol was largely influenced at basic pH, degrading 79% of the contaminant in 240 min, with the powder obtained by co-precipitation; meanwhile, for the solid-state preparation, the degradation reached only 55%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abrahams, I., Bush, A., Krok, J. F., Hawkes, G. E., Sales, K. D., Thornton, P., & Boguszb, W. (1998). Effects of preparation parameters on oxygen stoichiometry in Bi4V2O11–δ. Journal of Materials Chemistry, 8, 1213–1217.

    Article  CAS  Google Scholar 

  • Aslam, M., Iqbal, M., Ismail, I., Salah, N., Chandrasekaran, S., Qamar, M. T., & Hameed, A. (2015). Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. Journal of Hazardous Materials, 286, 127–135.

    Article  CAS  Google Scholar 

  • Baran, W., Makowski, A., & Wardas, W. (2008). The effect of UV radiation absorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence TiO2. Dyes and Pigments, 76(1), 226–230. JOUR. doi:10.1016/j.dyepig.2006.08.031

  • Callahan, M., Slimak, M., Gbel, N. (1979). EPA-44014-79-029a, b. Washington, DC, USA: United States Environmental Protection Agency, NTIS. Water related environmental fate of 120 priority pollutants.

  • Diesen, V., & Jonsson, M. (2014). Comment on the use of phenols as probes for the kinetics of heterogeneous photocatalysis. Applied Catalysis B: Environmental, 158, 429–431.

    Article  Google Scholar 

  • García-Pérez, U. M., Sepúlveda-Guzmán, S., Martínez- de la Cruz, A., & Peral, J. (2012). Selective synthesis of monoclinic bismuth vanadate powders by surfactant-assisted co-precipitation method: study of their electrochemical and photocatalytic properties. International Journal of Electrochemical Science, 7, 9622–9632.

    Google Scholar 

  • Hu, Y., & Yuan, C. (2005). Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols. Journal of Crystal Growth, 274, 563–568.

    Article  CAS  Google Scholar 

  • Hykrdová, L., Jirkovský, J., Mailhot, G., & Bolte, M. (2002). Fe(III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 151(1–3), 181–193. JOUR. doi:10.1016/S1010-6030(02)00014-X

  • Kahru, A., Maloverjan, A., Sillak, H., & Põllumaa, L. (2002). The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry. Environmental Science and Pollution Research, 9, 27–33.

    Article  Google Scholar 

  • Lesani, P., Babaei, A., Ataie, A., & Mostafavi, E. (2016). Nanostructured MnCo2O4 synthesized via co-precipitation method for SOFC interconnect application. International Journal of Hydrogen Energy, 41(45), 20640–20649. doi:10.1016/j.ijhydene.2016.07.216.

    Article  CAS  Google Scholar 

  • Li, D., Zhu, Q., Han, C., Yang, Y., Jiang, W., & Zhang, Z. (2015). Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads. Journal of Hazardous Materials, 285, 398–408.

    Article  CAS  Google Scholar 

  • Li, F., Kang, Y., Chen, M., Liu, G., Lv, W., Yao, K., Chen, P., & Huang, H. (2016). Photocatalytic degradation and removal mechanism of ibuprofen via monoclinic BiVO4 under simulated solar light. Chemosphere, 150, 139–144.

    Article  CAS  Google Scholar 

  • Ling, C. M., Mohamed, A. R., & Bhatia, S. (2004). Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere, 57(7), 547–554. Comparative Study, Journal Article, Research Support, Non-U.S. Gov’t. doi:10.1016/j.chemosphere.2004.07.01

  • Ling, H., Kim, K., Liu, Z., Shi, J., Zhu, X., & Huang, J. (2015). Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles. Catalysis Today, 258, 96–102.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhu, Y., Xu, J., Bai, X., Zong, R., & Zhu, Y. (2013). Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Applied Catalysis B: Environmental, 142, 561–567.

    Article  Google Scholar 

  • Liu, C., Hu, J., Zhang, H., & Xiao, R. (2016). Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel, 182, 864–870.

    Article  CAS  Google Scholar 

  • Luo, H., Li, C., Wu, C., Zheng, W., & Dong, X. (2015). Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode. Electrochimica Acta, 186, 486–493.

    Article  CAS  Google Scholar 

  • Ma, A., Wei, Y., Zhou, Z., Xu, W., Ren, F., Ma, H., & Wang, J. (2012). Preparation Bi2S3–TiO2 heterojunction/polymer fiber composites and its photocatalytic degradation of methylene blue under Xe lamp irradiation. Polymer Degradation and Stability, 97, 125–131.

    Article  CAS  Google Scholar 

  • Mairesse, G., Roussel, P., Vannier, R. N., Anne, M., Pirovano, C., & Nowogrocki, G. (2003a). Crystal structure determination of α, β and γ-Bi4V2O11 polymorphs. Part I: γ and β-Bi4V2O11. Solid State Sciences, 5, 851–859.

    Article  CAS  Google Scholar 

  • Mairesse, G., Roussel, P., Vannier, R. N., Anne, M., & Nowogrocki, G. (2003b). Crystal structure determination of α-, β- and γ-Bi4V2O11 polymorphs. Part II: crystal structure of α-Bi4V2O11. Solid State Sciences, 5, 861–869.

    Article  CAS  Google Scholar 

  • Martínez-de la Cruz, A., & Obregón, A. S. (2009). Synthesis and characterization of nanoparticles of α-Bi2Mo3O12 prepared by co-precipitation method: Langmuir adsorption parameters and photocatalytic properties with rhodamine B. Solid State Sciences, 11(4), 829–835. JOUR. doi:10.1016/j.solidstatesciences.2009.01.007

  • Martínez-de la Cruz, A., & García-Pérez, U. M. (2010). Photocatalytic properties of BiVO4 prepared by the co-precipitation method: degradation of rhodamine B and possible reaction mechanisms under visible irradiation. Materials Research Bulletin, 45, 135–141.

    Article  Google Scholar 

  • Martinez-de la Cruz, A., Marcos Villarreal, S. M., Torres-Martinez, L. M., Lopez Cuellar, E., & Ortiz Mendez, U. (2008). Photoassisted degradation of rhodamine B by nanoparticles of α-Bi2Mo3O12 prepared by an amorphous complex precursor. Materials Chemistry and Physics, 112, 679–685.

    Article  CAS  Google Scholar 

  • Martínez-de la Cruz, A., Obregón Alfaro, S., Torres-Martínez, L. M., & Juárez Ramírez, I. (2008). Synthesis and characterization of nanoparticles of α-Bi2Mo3O12 prepared by co-precipitation method: Langmuir adsorption parameters and photocatalytic properties with rhodamine B. Journal of Ceramic Processing Research, 9, 490–494.

    Google Scholar 

  • Ökte, A. N., Tuncel, D., Pekcan, A. H., & Özden, T. (2014). Characteristics of iron-loaded TiO 2 -supported montmorillonite catalysts : 2-Naphthol degradation under UV-A irradiation, (April). doi:10.1002/jctb.4393.

  • Peng, X., Peng, K., & Huang, J. (2017). Synthesis and magnetic properties of core-shell structured Finemet/NiZn ferrite soft nanocomposites by co-precipitation. Journal of Alloys and Compounds, 691, 165–170. doi:10.1016/j.jallcom.2016.08.102.

    Article  CAS  Google Scholar 

  • Qian, X., Yue, D., Tian, Z., Reng, M., Zhu, Y., Kan, M., Zhang, T., & Zhao, Y. (2016). Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 193, 16–21.

    Article  CAS  Google Scholar 

  • Qourzal, S., Barka, N., Tamimi, M., Assabbane, A., & Ait-Ichou, Y. (2008). Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst: identification of intermediates and the reaction pathway. Applied Catalysis A: General, 334, 386–393.

    Article  CAS  Google Scholar 

  • Qourzal, S., Bakas, I., Barka, N., Assabbane, A., & Ait-ichou, Y. (2014). Factorial experimental design for the optimization o f β-naphthol photocatalytic degradation in TiO 2. Aqueous Suspension, 2(1), 1–11. doi:10.13179/canchemtrans.2014.02.01.0046.

    Google Scholar 

  • Quiñones, D. H., Rey, A., Álvarez, P. M., Beltrán, F. J., & Puma, G. L. (2015). Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Applied Catalysis B: Environmental, 178, 74–81.

    Article  Google Scholar 

  • Rengaraj, S., & Li, X. Z. (2006). Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension. Journal of Molecular Catalysis A: Chemical, 243, 60–67.

    Article  CAS  Google Scholar 

  • Rullens, F., Laschewsky, A., & Devillers, M. (2006). Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts. Chemistry of Materials, 18, 771–777.

    Article  CAS  Google Scholar 

  • Tanaka, K., Padermpole, K., & Hisanaga, T. (2000). Photocatalytic degradation of commercial azo dyes. Water Research, 34(1), 327–333. JOUR. doi:10.1016/S0043-1354(99)00093-7

  • Terzian, R., & Serpone, N. (1995). Heterogeneous photocatalyzed oxidation of creosote components: mineralization of xylenols by illuminated TiO2 in oxygenated aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 89, 163–175.

    Article  CAS  Google Scholar 

  • Thakral, V., & Uma, S. (2010). Investigation of visible light photocatalytic behavior of Bi4V2O11−δ and BIMEVOX (ME = Al, Ga) oxides. Materials Research Bulletin, 45, 1250–1254.

    Article  CAS  Google Scholar 

  • Theurich, J., Bahnemann, D. W., Vogel, R., Ehamed, F. E., Alhakimi, G., & Rajab, I. (1997). Degradation of naphthalene and anthracene : analysis of the degradation pathway. 23(3), 247–274

  • Wang, R. C., & Yu, C. W. (2013). Phenol degradation under visible light irradiation in the continuous system of photocatalysis and sonolysis. Ultrasonics Sonochemistry, 20, 553–564.

    Article  CAS  Google Scholar 

  • Wang, T., Zhao, H., Wang, H., Liu, B., & Li, C. (2016). Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment. Chemosphere, 155, 94–99.

    Article  CAS  Google Scholar 

  • Wiegel, M., Middel, W., & Blasse, G. (1995). Influence of ns2 ions on the luminescence of niobates and tantalates. Journal of Materials Chemistry, 5, 981–983.

    Article  CAS  Google Scholar 

  • Wolff, M. S., Teitelbaum, S. L., McGovern, K., Pinney, S. M., Windham, G. C., Galvez, M., Pajak, A., Rybak, M., Calafat, A. M., Kushi, L. H., & Biro, F. M. (2015). Environmental phenols and pubertal development in girls. Environment International, 84, 174–180.

    Article  CAS  Google Scholar 

  • Yuan, R., Ramjaun, S. N., Wang, Z., & Liu, J. (2011). Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. Journal of Hazardous Materials, 196, 173–179.

    Article  CAS  Google Scholar 

  • Zhou, W., Guo, W., Zhou, H., & Chen, X. (2016a). Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway. Microbiological Research, 190, 37–45.

    Article  CAS  Google Scholar 

  • Zhou, M., Xu, L., Xi, X., Li, P., Dai, W., Zhu, W., et al. (2016b). Investigation on the preparation and properties of monodispersed Al2O3-ZrO2 nanopowder via Co-precipitation method. Journal of Alloys and Compounds, 678, 337–342. doi:10.1016/j.jallcom.2016.03.265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Council Research of the Universidad de Oriente, Petro-Boqueron, and the Laboratory of Geology of PDVSA-Puerto La Cruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Longoria Rodríguez.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, L.T., Leyva-Porras, C., Sánchez-Domínguez, M. et al. Comparative Photocatalytic Performance on the Degradation of 2-Naphthol Under Simulated Solar Light Using α-Bi4V2O11 Synthesized by Solid-State and Co-precipitation Methods. Water Air Soil Pollut 228, 75 (2017). https://doi.org/10.1007/s11270-017-3242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3242-7

Keywords

Navigation