Skip to main content

Advertisement

Log in

Geochemical Processes Controlling Fluoride Enrichment in Groundwater at the Western Part of Kumamoto Area, Japan

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper first time reports the geochemical processes that are controlling fluoride enrichment in the groundwater of western Kumamoto area, Japan. Fifty (50) groundwater samples were collected and analyzed for the study where fluoride (F) concentration ranges from 0.1 to 1.57 mg/L. About 58 % of the shallow groundwater and 26 % of the deep groundwater samples contain fluoride concentration beyond the Japanese drinking water permissible limit (0.8 mg/L). High F is largely accumulated in the stagnant zone of the Kumamoto Plain area and associated with Na-HCO3-type groundwater. High pH, high HCO3, low Ca2+, and high Na+ are the major characteristics of high-F groundwater. Hydrolysis of F-bearing minerals and desorption of F from hydrous metal oxides are considered to be the primary sources of fluoride in groundwater. A positive correlation between F and Na+/Ca2+ ratio (r 2 = 0.53) indicates that major ion chemistry plays a significant role in fluoride mobilization. Weakly alkaline nature of groundwater with high pH (7.05–9.45) expedites the leaching process of exchangeable F from F-bearing minerals as well as favors desorption of F from metal oxide surfaces. High HCO3 and high PO4 3− in the groundwater facilitate desorption process as competing anions, while high Na+/Ca2+ ratio largely control this process by decreasing positive-charge density of the metal-oxide surfaces. High Na+/Ca2+ ratio is attributed due to the cation-exchange process, while high pH and HCO3 are the result of both silicate hydrolysis and microbial reduction processes. In addition, calcite and fluorite seem to have a control on groundwater fluoride geochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ayenew, T. (2008). The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian rift and adjacent highlands. Environmental Geology, 54, 1313–1324.

    Article  CAS  Google Scholar 

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487.

    Article  CAS  Google Scholar 

  • Cao, J., Zhao, Y., Liu, J. W., Xirao, R. D., & Danzeng, S. B. (2000). Environmental fluoride content in Tibet. Environmental Research, 83(3), 333–337.

    Article  Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., & Edmunds, W. M. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí basin, Mexico. Journal of Hydrology, 261, 24–47.

    Article  CAS  Google Scholar 

  • Chae, G. T., Yun, S. T., Kwon, M. J., Kim, S. Y., & Mayer, B. (2006). Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochemical Journal, 40, 95–102.

    Article  CAS  Google Scholar 

  • Chae, G.-T., Yun, S.-T., Mayer, B., Kim, K.-H., Kim, S.-Y., Kwon, J.-S., Kim, K., & Koh, Y.-K. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385, 272–283.

    Article  CAS  Google Scholar 

  • Currell, M., Cartwright, I., Raveggi, M., & Han, D. (2011). Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng basin, China. Applied Geochemistry, 26(4), 540–552.

    Article  CAS  Google Scholar 

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. Journal of Contaminant Hydrology, 24(1), 85–96.

    Article  CAS  Google Scholar 

  • Dean, H. T., & Elvove, E. (1937). Further studies on the minimal threshold of chronic endemic dental fluorosis. Public Health Reports (Washington), 52, 1249–1264.

    Article  CAS  Google Scholar 

  • Deshmukh, A. N., Valadaskar, P. M., & Malpe, D. B. (1995). Fluoride in environment: a review. Gondwana Geological Magazine, 9, 1–20.

    Google Scholar 

  • Diaz-Barriga, F., Leyva, R., Quistian, J., Loyola-Rodriguez, J. B., Pozos, A., & Grimaldo, M. (1997). Endemic fluorosis in San Luis Potosi, Mexico. Fluoride, 30, 219–222.

    Google Scholar 

  • Dissanayake, C. B. (1991). The fluoride problem in the groundwater of Sri Lanka—environmental management and health. International Journal of Environmental Studies, 38, 137–156.

    Article  CAS  Google Scholar 

  • Edmunds, W. M., & Smedley, P. L. (2013). Fluoride in natural waters. In Essentials of medical geology (pp. 311–336). Netherlands: Springer.

    Chapter  Google Scholar 

  • Edmunds, W. M., Cook, J. M., Kinniburgh, D. G., Miles, D. G., & Trafford, J. M. (1989). Trace element occurrence in British groundwaters. British Geological Survey Research Report SD/89/3, Keyworth, p. 424.

  • Fuhong, R., & Shuquin, J. (1988). Distribution and formation of high-fluorine groundwater in China. Environmental Geology and Water Sciences, 12, 3–10.

    Article  Google Scholar 

  • Gaciri, S. J., & Davies, T. C. (1993). The occurrence and geochemistry of fluoride in some natural waters of Kenya. Journal of Hydrology, 143, 395–412.

    Article  CAS  Google Scholar 

  • Gizaw, B. (1996). The origin of high bicarbonate and fluoride concentration in waters of the Main Ethiopian Rift Valley, East African Rift system. Journal of African Earth Science, 22, 391–402.

    Article  CAS  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan basin, northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water, 13, 275–281.

    Article  CAS  Google Scholar 

  • Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I. T., & Shimada, J. (2013). The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research, 47, 2661–2675.

    Article  CAS  Google Scholar 

  • Hossain, S., Hosono, T., Tokunaga, T., Ide, K., & Shimada, J. (2013). Geochemical modeling of groundwater evolution in a volcanic aquifer system of Kumamoto area, Japan. In American Geophysical Union (AGU) 2013 Fall Meeting, San Francisco, 9–13 December. Abstract H11H-1247.

  • Hossain, S., Hosono, T., Ide, K., Matsunaga, M., & Shimada, J. (2016). Redox processes and occurrence of arsenic in a volcanic aquifer system of Kumamoto area, Japan. Environmental Earth Sciences, 75(9), 1–19.

    Article  CAS  Google Scholar 

  • Hunter, A. G. (1998). Intracrustal controls on the coexistence of tholeiitic and calc-alkaline magma series at Aso volcano, SW Japan. Journal of Petrology, 39, 1255–1284.

    Article  CAS  Google Scholar 

  • Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. P. (2005). Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20, 221–228.

    Article  CAS  Google Scholar 

  • Kagabu, M., Matsunaga, M., Shimada, J., Ide, K., Mori, K., & Momoshima, N. (2013). Groundwater age determination by using 85Kr in groundwater. In International Association of Hydrologist conference, Perth Australia, no 173.

  • Kim, S. H., Kim, K., Koh, K. S., Kim, Y., & Lee, K. S. (2012). Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere, 87(8), 851–856.

    Article  CAS  Google Scholar 

  • Kumamoto Prefecture and Kumamoto City. (1995). Integrated Groundwater Survey Report of the Kumamoto Area, Kumamoto Prefecture and Kumamoto City, pp 122 (in Japanese).

  • Kumamoto Prefecture Geological Map Compilation Committee Report. (2008). Kumamoto Prefecture geological map (1:100000) and the explanations, Kumamoto Prefecture Industry Association, Geological Survey of Japan, 118 p (in Japanese).

  • Li, C., Gao, X., & Ando Wang, Y. (2015). Hydrogeochemistry of high-fluoride groundwater at Yuncheng basin, Northern China. Science of the Total Environment, 508, 155–165.

    Article  CAS  Google Scholar 

  • Majumdar, K. K. (2011). Health impact of supplying safe drinking water containing fluoride below permissible level on flourosis patients in a fluoride-endemic rural area of West Bengal. Indian Journal of Public Health, 55, 303–308.

    Article  Google Scholar 

  • Masue, Y., Loeppert, R. H., & Ando Kramer, T. A. (2007). Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environmental Science & Technology, 41(3), 837–842.

    Article  CAS  Google Scholar 

  • McNab, W. W., Jr., Singleton, M. J., Moran, J. E., & Esser, B. K. (2009). Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California. Applied Geochemistry, 24, 129–197.

    Article  CAS  Google Scholar 

  • Meng, X., Korfiatis, G. P., Bang, S., & Bang, K. W. (2002). Combined effects of anions on arsenic removal by iron hydroxides. Toxicology Letters, 133(1), 103–111.

    Article  CAS  Google Scholar 

  • Miyoshi, M., Furukawa, K., Shinmura, T., Shimono, M., & Hasenaka, T. (2009). Petrography and whole-rock geochemistry of pre-Aso lavas from the caldera wall of Aso volcano, central Kyushu. Journal of the Geological Society of Japan, 115, 672–687 (in Japanese with English abstract).

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water–rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727–1740.

    Article  CAS  Google Scholar 

  • Ono, K., & Watanabe, K. (1985). Geological map of Aso Volcano (1:50,000). In Geological map of volcanoes 4. Geological survey of Japan (in Japanese with English abstract).

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report, 99–4259, 312.

  • Rafique, T., Naseem, S., Usmani, T. H., Bashir, E., Khan, F. A., & Bhanger, M. I. (2009). Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan. Journal of Hazardous Materials, 171, 424–430.

    Article  CAS  Google Scholar 

  • Saether, O. M., Andreassen, B. T., & Semb, A. (1995). Amounts and sources of fluoride in precipitation over southern Norway. Atmospheric Environment, 29, 1785–1793.

    Article  CAS  Google Scholar 

  • Scanlon, B. R., Nicot, J. P., Reedy, R. C., Kurtzman, D., Mukherjee, A., & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 24, 2061–2071.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1967). Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Resources Series, 33, 44–52.

    Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., Macdonald, D. M. J., Nicolli, H. B., Barros, A. J., Tullio, J. O., Pearce, J. M., & Alonso, M. S. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20, 989–1016.

    Article  CAS  Google Scholar 

  • Su, C., & Puls, R. W. (2001). Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environmental Science & Technology, 35(22), 4562–4568.

    Article  CAS  Google Scholar 

  • Su, C., Wang, Y., Xie, X., & Li, J. (2013). Aqueous geochemistry of high-fluoride groundwater in Datong basin, Northern China. Journal of Geochemical Exploration, 135, 79–92.

    Article  CAS  Google Scholar 

  • Travi, Y. (1993). Hydrogéologie et hydrochimie des aquifères du Sénégal. Sciences Géologiques, Memoire 95. Paris: Université de Paris-Sud.

    Google Scholar 

  • Tsuru, Y., Sueyoshi, E., Akahoshi, h., Iwanaga, T., Iwata, A., Shinnya, T., Murakami, M., Mori, M., Baba, M., Nakaguma, H., & Tajima, K. (2006). The yearly change of groundwater quality in Kumamoto city. Bulletin of Kumamoto city environmental research institute, 52–63 (in Japanese).

  • Watanabe, K. (1978). Studies on the Aso pyroclastic flow deposits in the region to the west of Aso caldera, southwest Japan, I: Geology of the Aso-4 pyroclastic flow deposits. Mem. Fac. Educ., Kumamoto Univ., 27, Nat. Sci., 97–120.

  • WHO. (2004). Fluoride in drinking water—background document for development of WHO guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: World Health Organization.

    Google Scholar 

  • Wuyi, W., Ribang, L., Jian’an, T., Kunli, L., Lisheng, Y., Hairong, L., & Yonghua, L. (2002). Adsorption and leaching of fluoride in soils of China. Fluoride, 35, 122–129.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported partly by the Japan Science and Technology Agency (JST) with additional budget from Grant-in-Aid for Young Scientists (A) (no. 24681007). The authors wish to thank Dr. Kimpei Ichiyanagi and Dr. Makoto Kagabu of Kumamoto University for their useful suggestions during seminar discussion. We are grateful to Mr. Kiyoshi Ide and Midori Matsunaga for their cordial help during sample collection and chemical analyses. We are also grateful to the Kumamoto City Government, Prefectural Government, and Ministry of Land and Infrastructure Development of Japan for their kind support and permission for groundwater sampling from their own managed wells. Finally, sincere thanks to the anonymous reviewers’ for their constructive and suggestions to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahadat Hossain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, S., Hosono, T., Yang, H. et al. Geochemical Processes Controlling Fluoride Enrichment in Groundwater at the Western Part of Kumamoto Area, Japan. Water Air Soil Pollut 227, 385 (2016). https://doi.org/10.1007/s11270-016-3089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3089-3

Keywords

Navigation