Skip to main content
Log in

Three Functional Biomarkers for Monitoring the Nanoscale Zero-Valent Iron (nZVI)-Induced Molecular Signature on Soil Organisms

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Currently, there are increasing efforts to utilize nanoremediation as an environmental technology for cleaning up polluted environments using nanoscale zero-valent iron (nZVI); however, concerns exist regarding the long-term environmental impact of this strategy. In this study, an innovative methodology for evaluating nZVI impact on soil bacteria is utilized, based on transcriptional analysis of three novel biomakers: tnaA, sodB and trx genes. At the same time, classical toxicological bioassays with the nematode Caenorhabditis elegans were performed. Microcosms treated with 1, 5 and 10 % w/w of nZVI were set up using a commercial standard soil and incubated for 21 days. The tnaA gene, involved in indole production, was significantly upregulated at all assessed nZVI concentrations, suggesting that bacterial cells used this molecule to inform the rest of the community about the changes produced upon nZVI soil treatment. The higher the exposure time, the lower nZVI concentration needed to detect these changes. Consequently, soil bacteria activate a cellular adaptive response to cope with the nZVI-induced oxidative stress, increasing the expression of genes encoding key reactive oxygen species (ROS)-scavenging enzymes; in fact, an upregulation of the sodB and katB genes was recorded upon nZVI exposure. On the contrary, C. elegans survival and growth endpoints were not affected at any nZVI concentration whereas the exposure time significantly increased nematode growth in the soil. Therefore, despite the lack of toxicity revealed by the classical conducted tests, the transcriptional analyses demonstrated the usefulness of combining the set of proposed biomarkers for early detection and monitoring the impact of nZVI on soil bacteria after environmentally important periods of exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barra-Caracciolo, A., Grenni, P., Ciccoli, R., Di Landa, G., & Cremisini, C. (2005). Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization. Pest Management Science, 61, 863–869.

    Article  Google Scholar 

  • Benndorf, D., Balcke, G. U., Harms, H., & von Bergen, M. (2007). Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME Journal, 1, 224–234.

    Article  CAS  Google Scholar 

  • Bernasconi, C., Volponi, G., Picozzi, C., & Foschino, R. (2007). Use of the tna operon as a new molecular target for Escherichia coli detection. Applied and Environmental Microbiology, 73, 6321–6325.

    Article  CAS  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    CAS  Google Scholar 

  • Costa, P. M., & Fadeel, B. (2015). Emerging systems biology approaches in nanotoxicology: towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicology and Applied Pharmacology. doi:10.1016/j.taap.2015.12.2014.

    Google Scholar 

  • Cullen, L. G., Tilston, E. L., Mitchell, G. R., Collins, C. D., & Shaw, L. J. (2011). Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere, 82(11), 1675–1682.

    Article  CAS  Google Scholar 

  • Decho, A. W., Norman, R. S., & Visscher, P. T. (2010). Quoring sensing in natural environments: emerging views from microbial mats. Trends in Microbiology, 18, 73–80.

    Article  CAS  Google Scholar 

  • Domka, J., Lee, J., Bansal, T., & Wood, T. (2007). Temporal gene-expression in Escherichia coli K-12 biofilms. Environmental Microbiology, 9, 332–346.

    Article  CAS  Google Scholar 

  • Fajardo, C., Ortíz, L. T., Rodríguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere, 86, 802–808.

    Article  CAS  Google Scholar 

  • Fajardo, C., Saccà, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, 93, 1077–1083.

    Article  CAS  Google Scholar 

  • Fajardo, C., Gil-Díaz, M., Costa, G., Alonso, J., Guerrero, A. M., Nande, M., Lobo, M. C., & Martín, M. (2015). Residual impact of aged nZVI on heavy metal-polluted soils. Science of the Total Environment. doi:10.1016/j.scitotenv.2015.03.067.

    Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.

    Article  CAS  Google Scholar 

  • Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science and Technology, 45(4), 1659–1664.

    Article  CAS  Google Scholar 

  • Gil-Díaz, M., Ortiz, L. T., Costa, G., Alonso, J., Rodríguez-Membibre, M. L., Sánchez-Fortún, S., Pérez-Sanz, A., Martín, M., & Lobo, M. C. (2014). Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates. Water, Air, and Soil Pollution, 225, 1990–2003.

    Article  Google Scholar 

  • Gomes, H., Dias-Ferreira, C., & Ribeiro, A. B. (2013). Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of the Total Environment, 445–446, 237–260.

    Article  Google Scholar 

  • Höss, S., Ahlf, W., Bergtold, M., Blubaum-Gronau, E., Brinke, M., Donnevert, G., Menzel, R., Möhlenkamp, C., Ratte, H.-T., Trunspurger, W., von Danwitz, B., & Pluta, H.-J. (2012). Interlaboratory comparison of a standardized toxicity test using the nematode Caenorhabditis elegans (ISO 10872). Environmental Toxicology and Chemistry, 31, 1525–1535.

    Article  Google Scholar 

  • ISO. (2010). Water quality-determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). ISO 10872. International Organization for Standardization, Geneva, Switzerland.

  • Johansen, A., Pedersen, A. L., Jensen, K. A., Karlson, U., Hansen, B. M., Scott-Fordsmand, J. J., & Winding, A. (2008). Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environmental Toxicology and Chemistry, 27(9), 1895–1903.

    Article  CAS  Google Scholar 

  • Kahru, N., Dubourguier, H.-C., Blinova, I., Ivask, A., & Kasemets, K. (2008). Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a mini review. Sensors, 8, 5153–5170.

    Article  CAS  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives, 117, 1823–1831.

    Article  Google Scholar 

  • Keller, A. A., Garner, K., Miller, R. J., & Leniham, H. S. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS ONE, 7(8), e43983. doi:10.1371/journal.pone.0043983.

    Article  CAS  Google Scholar 

  • Kim, H. S., Ahn, J. Y., Kim, C., Lee, S., & Hwang, I. (2014). Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Chemosphere, 113, 93–100.

    Article  CAS  Google Scholar 

  • Kimura, N. (2014). Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence, 5, 433–442.

    Article  Google Scholar 

  • Kuczynska-Wisnik, D., Matuszewska, E., & Laskowska, E. (2010). Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm by influencing the level of extracellular indole. Microbiology, 156, 148–157.

    Article  CAS  Google Scholar 

  • Løkke, H., & Van Gestel, C. A. M. (1998). Handbook of soil invertebrate toxicity tests. Chichester: Wiley.

    Google Scholar 

  • Mishra, S., & Imlay, J. (2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Archives of Biochemistry and Biophysics, 525, 145–160.

    Article  CAS  Google Scholar 

  • Mueller, N.C., Nowack, B., 2010. Nanozero valent iron—the solution for water and soil remediation? Report of the ObservatoryNANO. <www.observatorynano.eu>.

  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials as the nanolevel. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  • Němeček, J., Lhotský, O., & Cajthaml, T. (2014). Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Science of the Total Environment, 485–486, 739–747.

    Google Scholar 

  • Otto, M., Floyd, M., & Bajpai, S. (2008). Nanotechnology for site remediation. Remediation, 19, 99–108.

    Article  Google Scholar 

  • Pan, B., & Xing, B. (2012). Applications and implications of manufactured nanoparticles in soils: a review. European Journal of Soil Science, 63(4), 437–456.

    Article  CAS  Google Scholar 

  • Pawlett, M., Robert, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research, 20, 1041–1049.

    Article  CAS  Google Scholar 

  • Roh, J.-H., Sim, S. J., Yi, J., Park, K., Chung, K. H., Riu, D.-Y., & Choi, J. (2009). Ecotoxicity of silver nanoparticles on soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environmental Science and Technology, 43, 3933–3940.

    Article  CAS  Google Scholar 

  • Saccà, M. L., Fajardo, C., Nande, M., & Martin, M. (2013). Effects of nano zero-valent iron on Klebsiella oxytoca and stress response. Microbial Ecology, 66, 806–812.

    Article  Google Scholar 

  • Saccà, M. L., Fajardo, C., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2014a). Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS ONE, 9, e89677. doi:10.1371/journal.pone.0089677.

    Article  Google Scholar 

  • Saccà, M. L., Fajardo, C., Costa, G., Lobo, C., Nande, M., & Martin, M. (2014b). Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere, 104, 184–189.

    Article  Google Scholar 

  • Schirmer, K., Fischer, B. B., Madureira, D. J., & Pillai, S. (2010). Transcriptomics in ecotoxicology. Analytical and Bioanalytical Chemistry, 397, 917–923.

    Article  CAS  Google Scholar 

  • Ševcu, A., El-Temsah, Y., Joner, E., & Cerník, M. (2011). Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes and Environments, 26(4), 271–281.

    Article  Google Scholar 

  • Shen, L., Xiao, J., Ye, H., & Wang, D. (2009). Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environmental Toxicology Pharmacology, 28, 125–132.

    Article  CAS  Google Scholar 

  • Zhang, M., He, F., Zhao, D., & Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Research, 45, 2401–2414.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chen, D., Smith, M. A., Zhang, B., & Pan, X. (2012). Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS One, 7(3), e31849. doi:10.1371/journal.pone.0031849.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministerio de Ciencia e Innovación and the Spanish Ministry of Economy and Competitiveness for supporting the Project CTM2013-46870-C2-1-P. Fajardo was supported by a postdoctoral grant under the Torres Quevedo program of the Spanish Ministry of Economy and Competitiveness (PTQ-12-05399). We also thank to Prof. Miguel Ibáñez (Dpto. Economía Agraria, Estadística y Gestión de empresas, UPM), and Ricardo García (Computing Services Research Support, UCM) for their helpful collaboration with the statistical analysis of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Fajardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 37.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajardo, C., Costa, G., Nande, M. et al. Three Functional Biomarkers for Monitoring the Nanoscale Zero-Valent Iron (nZVI)-Induced Molecular Signature on Soil Organisms. Water Air Soil Pollut 227, 201 (2016). https://doi.org/10.1007/s11270-016-2901-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2901-4

Keywords

Navigation