Skip to main content
Log in

Co-Digestion of Swine Manure and Crude Glycerine: Increasing Glycerine Ratio Results in Preferential Degradation of Labile Compounds

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Co-digestion of swine manure and crude glycerine from biodiesel production has been successfully attempted by many authors reporting substantial increments in biogas production. However, the effectiveness of this approach has been questioned recently. The addition of glycerol may cause an improvement in biogas production but at the expense of disturbing the degradation of manure. In the present paper, the organic transformations undergone in the anaerobic digestion of pig manure at increasing amounts of glycerine (2–8 % (v/v)) were analysed using spectroscopy techniques (Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR)). An increase in biogas production was observed with the addition of glycerine up to 8 %, resulting in a volumetric production of methane per litre of reactor (Lr) of 1.4 L CH4/Lr d. However, the subsequent failure of the system was observed at this glycerine content due to the inhibitory effect caused by high H2S concentration and foam formation. FTIR and 1H NMR analysis performed on digestate samples showed that the addition of the co-substrate also caused the preferential degradation of glycerine and accumulation of proteins and aliphatic compounds. A post-stabilisation stage was necessary to complete the degradation process. Modifications in organic matter continued under this last stage although in the previous digestion period, a competition for substrate between sulphate reducing bacteria and methanogens was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. (2005). Standard methods for the examination of water & wastewater, American Public Health (Associationth ed.). Washington DC: American Public Health Association.

    Google Scholar 

  • Boe, K., Kougias, P. G., Pacheco, F., O-Thong, S., & Angelidaki, I. (2012). Effect of substrates and intermediate compounds on foaming in manure digestion systems. Water Science & Technology, 66(10), 2146–2154.

    Article  CAS  Google Scholar 

  • Brunetti, G., Farrag, K., Plaza, C., & Senesi, N. (2012). Advanced techniques for characterization of organic matter from anaerobically digested grapemarc distillery effluents and amended soils. Environmental Monitoring and Assessment, 184(4), 2079–2089.

    Article  CAS  Google Scholar 

  • Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40(3), 1285–1292.

    Article  CAS  Google Scholar 

  • Castaldi, P., Alberti, G., Merella, R., & Melis, P. (2005). Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management, 25(2), 209–213.

    Article  CAS  Google Scholar 

  • Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.

    Article  CAS  Google Scholar 

  • Chiu, C. W., Dasari, M. A., Sutterlin, W. R., & Suppes, G. J. (2006). Removal of residual catalyst from simulated biodiesel’s crude glycerol for glycerol hydrogenolysis to propylene glycol. Industrial & Engineering Chemistry Research, 45(2), 791–795.

    Article  CAS  Google Scholar 

  • Cuetos, M. J., Morán, A., Otero, M., & Gómez, X. (2009). Anaerobic co‐digestion of poultry blood with OFMSW: FTIR and TG–DTG study of process stabilization. Environmental Technology, 30(6), 571–582.

    Article  CAS  Google Scholar 

  • Cuetos, M. J., Fernández, C., Gómez, X., & Morán, A. (2011). Anaerobic co-digestion of swine manure with energy crop residues. Biotechnology and Bioprocess Engineering, 16(5), 1044–1052.

    Article  CAS  Google Scholar 

  • Dar, S. A., Kleerebezem, R., Stams, A. J., Kuenen, J. G., & Muyzer, G. (2008). Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Applied Microbiology and Biotechnology, 78(6), 1045–1055.

    Article  CAS  Google Scholar 

  • Fountoulakis, M. S., Petousi, I., & Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Management, 30(10), 1849–1853.

    Article  CAS  Google Scholar 

  • Francioso, O., Ferrari, E., Saladini, M., Montecchio, D., Gioacchini, P., & Ciavatta, C. (2007). TG–DTA, DRIFT and NMR characterisation of humic-like fractions from olive wastes and amended soil. Journal of Hazardous Materials, 149(2), 408–417.

    Article  CAS  Google Scholar 

  • Gómez, X., Blanco, D., Lobato, A., Calleja, A., Martínez-Núñez, F., & Martin-Villacorta, J. (2011). Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1H NMR. Biodegradation, 22(3), 623–635.

    Article  Google Scholar 

  • Hafidi, M., Amir, S., & Revel, J. C. (2005). Structural characterization of olive mill wastewater after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochemistry, 40(8), 2615–2622.

    Article  CAS  Google Scholar 

  • Hill, D. T., Cobb, S. A., & Bolte, J. P. (1987). Using volatile fatty acid relationships to predict anaerobic digester failure. Trans. ASAE;(United States), 30(2).

  • Jensen, P. D., Astals, S., Lu, Y., Devadas, M., & Batstone, D. J. (2014). Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Research, 67, 355–366.

    Article  CAS  Google Scholar 

  • Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value‐added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26(4), 338–348.

    Article  CAS  Google Scholar 

  • Kobayashi, T., Li, Y. Y., Kubota, K., Harada, H., Maeda, T., & Yu, H. Q. (2012). Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Applied Microbiology and Biotechnology, 93(2), 847–857.

    Article  CAS  Google Scholar 

  • Kougias, P. G., Boe, K., & Angelidaki, I. (2013). Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors. Bioresource Technology, 144, 1–7.

    Article  CAS  Google Scholar 

  • Kougias, P. G., Boe, K., O-Thong, S., Kristensen, L. A., & Angelidaki, I. (2014). Anaerobic digestion foaming in full-scale biogas plants: a survey on causes and solutions. Water Science & Technology, 69, 889–895.

    Article  CAS  Google Scholar 

  • Lobato, A., Cuetos, M. J., Gómez, X., & Morán, A. (2010). Improvement of biogas production by co-digestion of swine manure and residual glycerine. Biofuels, 1(1), 59–68.

    Article  CAS  Google Scholar 

  • MAPA, (1994). Métodos Oficiales de Análisis. Direccion General de Politica Alimentaria, Ministerio de Agricultura, Pesca y Alimentación., Madrid.

  • Martínez, E. J., Fierro, J., Sánchez, M. E., & Gómez, X. (2012). Anaerobic co-digestion of FOG and sewage sludge: Study of the process by Fourier transform infrared spectroscopy. International Biodeterioration & Biodegradation, 75, 1–6.

    Article  Google Scholar 

  • Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.

    Article  CAS  Google Scholar 

  • Matsumi, R., Atomi, H., Driessen, A. J., & van der Oost, J. (2011). Isoprenoid biosynthesis in Archaea–biochemical and evolutionary implications. Research in Microbiology, 162(1), 39–52.

    Article  CAS  Google Scholar 

  • McCartney, D. M., & Oleszkiewicz, J. A. (1993). Competition between methanogens and sulphate reducers: effect of COD: sulphate ratio and acclimatization. Water Environment Research, 65, 655–664.

    Article  CAS  Google Scholar 

  • Meissl, K., Smidt, E., & Schwanninger, M. (2007). Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta, 72(2), 791–799.

    Article  CAS  Google Scholar 

  • Möller, K. (2015). Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agronomy for Sustainable Development, 35(3), 1021–1041.

    Article  Google Scholar 

  • Murto, M., Björnsson, L., & Mattiasson, B. (2004). Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. Journal of Environmental Management, 70(2), 101–107.

    Article  CAS  Google Scholar 

  • Neerackal, G. M., Ndegwa, P. M., Joo, H. S., Wang, X., Harrison, J. H., Heber, A. J., et al. (2015). Effects of Anaerobic Digestion and Solids Separation on Ammonia Emissions from Stored and Land Applied Dairy Manure. Water, Air, and Soil Pollution, 226(9), 1–12.

    Article  CAS  Google Scholar 

  • Nuchdang, S., & Phalakornkule, C. (2012). Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure. Journal of Environmental Management, 101(30), 164–172.

    Article  CAS  Google Scholar 

  • O’Flaherty, V., Mahony, T., O’Kennedy, R., & Colleran, E. (1998). Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry, 33(5), 555–569.

    Article  Google Scholar 

  • Omil, F., Méndez, R., & Lema, J. M. (1995). Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource Technology, 54(3), 269–278.

    Article  CAS  Google Scholar 

  • Oudghiri, F., García-Morales, J. L., & Rodríguez-Barroso, M. R. (2014). Rapid screening of estuarine sediments properties using thermogravimetric analysis and attenuated total reflectance (ATR) by Fourier transform infrared (FTIR) spectrometry. Water, Air, and Soil Pollution, 225(2), 1–10.

    Article  CAS  Google Scholar 

  • Provenzano, M. R., Malerba, A. D., Pezzolla, D., & Gigliotti, G. (2014). Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Management, 34(3), 653–660.

    Article  CAS  Google Scholar 

  • Pullammanappallil, P. C., Chynoweth, D. P., Lyberatos, G., & Svoronos, S. A. (2001). Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 78(2), 165–169.

    Article  CAS  Google Scholar 

  • Reig, F. B., Adelantado, J. G., & Moreno, M. M. (2002). FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta, 58(4), 811–821.

    Article  CAS  Google Scholar 

  • Schauder, R., & Schink, B. (1989). Anaerovibrio glycerini sp. nov., an anaerobic bacterium fermenting glycerol to propionate, cell matter, and hydrogen. Archives of Microbiology, 152(5), 473–478.

    Article  CAS  Google Scholar 

  • Smidt, E., & Lechner, P. (2005). Study on the degradation and stabilization of organic matter in waste by means of thermal analyses. Thermochimica Acta, 438(1), 22–28.

    Article  CAS  Google Scholar 

  • Stams, A. J., Dijkema, C., Plugge, C. M., & Lens, P. (1998). Contribution of 13C-NMR spectroscopy to the elucidation of pathways of propionate formation and degradation in methanogenic environments. Biodegradation, 9(6), 463–473.

    Article  CAS  Google Scholar 

  • Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., & Adani, F. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81(5), 577–583.

    Article  CAS  Google Scholar 

  • Tambone, F., Adani, F., Gigliotti, G., Volpe, D., Fabbri, C., & Provenzano, M. R. (2013). Organic matter characterization during the anaerobic digestion of different biomasses by means of CPMAS 13C NMR spectroscopy. Biomass and Bioenergy, 48, 111–120.

    Article  CAS  Google Scholar 

  • Timmerman, M., Schuman, E., van Eekert, M., & van Riel, J. (2015). Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure. Environmental Technology, 36(10), 1223–1236.

    Article  CAS  Google Scholar 

  • Van Gerpen, J. (2005). Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097–1107.

    Article  Google Scholar 

  • Viana, M. B., Freitas, A. V., Leitão, R. C., Pinto, G. A. S., & Santaella, S. T. (2012). Anaerobic digestion of crude glycerol: a review. Environmental Technology Reviews, 1(1), 81–92.

    Article  CAS  Google Scholar 

  • Wu, H., Zhao, Y., Long, Y., Zhu, Y., Wang, H., & Lu, W. (2011). Evaluation of the biological stability of waste during landfill stabilization by thermogravimetric analysis and Fourier transform infrared spectroscopy. Bioresource Technology, 102(20), 9403–9408.

    Article  CAS  Google Scholar 

  • Yeneneh, A. M., Kayaalp, A., Sen, T. K., & Ang, H. M. (2015). Effect of Combined Microwave-Ultrasonic Pretreatment of Real Mixed Sludge on the Enhancement of Anaerobic Digester Performance. Water, Air, and Soil Pollution, 226(9), 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was possible by the financial support of Junta de Castilla y León by the project LE182U14. NMR analyses were performed by the NMR Unit of University of Barcelona

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Gomez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fierro, J., Martinez, E.J., Rosas, J.G. et al. Co-Digestion of Swine Manure and Crude Glycerine: Increasing Glycerine Ratio Results in Preferential Degradation of Labile Compounds. Water Air Soil Pollut 227, 78 (2016). https://doi.org/10.1007/s11270-016-2773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2773-7

Keywords

Navigation