Skip to main content
Log in

Development of a Turbidity Prediction Methodology for Runoff–Erosion Models

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Surface water bodies can be impaired by turbidity and excessive sediment loading due to urban development, construction activities, and agricultural practices. Turbidity has been considered as a proxy for evaluating water quality, aquatic habitat, and aesthetic impairments in surface waters. The US Environment Protection Agency (USEPA) has listed turbidity and sediment as major pollutants for construction site effluent. Recently proposed USEPA regulations for construction site runoff led to increased interest in methods to predict turbidity in runoff based on parameters that are more commonly predicted in runoff–erosion models. In this study, a turbidity prediction methodology that can be easily incorporated into existing runoff–erosion models has been developed using fractions of sand, silt, and clay plus suspended sediment concentration of eight parent soils from locations in Oklahoma and South Carolina, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, C. (2005). Turbidity 6.7 (Version 2.1, 9/2005). In F. D. Wilde (Ed.), National Field Manual for the Collection of Water-Quality Data, Book 9, Handbooks for Water-Resources Investigations Chapter A6 Field Measurement: U.S. Geological Survey.

  • ASTM. (2007). ASTM D422–63 standard test method for particle-size analysis of soils. West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM. (2011). D7726-11 Standard guide for the use of various turbidimeter technologies for measurement of turbidity in water (p. 17). West Conshohocken: ASTM International.

    Google Scholar 

  • ASTM. (2013). E11-13 Standard specification for woven wire test sieve cloth and test sieves. West Conshohocken: ASTM International.

    Google Scholar 

  • Barfield, B. J., Hayes, J. C., Stevens, E., Harp, S. L., & Fogle, A. (2006). SEDIMOT III model. In V. P. Singh & D. K. Frevert (Eds.), Watershed models (pp. 381–398). Boca: CRC Press.

    Google Scholar 

  • Beckman Instruments. (1988). Instructional manual gp tabletop centrifuge. Palo Alto: Spinco Division of Beckman Instruments, Inc.

    Google Scholar 

  • Bernal, A., Cardenoso, R., Fabrellas, C., Matia, L., & Salvatella, N. (1999). An aesthetic quality index for Barcelona’s water supply. Water Science and Technology, 40(6), 23–29.

    Article  Google Scholar 

  • Bilotta, G. S., Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861. doi:10.1016/j.watres.2008.03.018.

    Article  CAS  Google Scholar 

  • Brasington, J., & Richards, K. (2000). Turbidity and suspended sediment dynamics in small catchments in the Nepal Middle Hills. Hydrological Processes, 14(14), 2559–2574. doi:10.1002/1099-1085(20001015)14:14<2559::AID-HYP114>3.0.CO;2-E.

    Article  Google Scholar 

  • Brookes, J. D., Hipsey, M. R., Burch, M. D., Regel, R. H., Linden, L. G., Ferguson, C. M., et al. (2005). Relative value of surrogate indicators for detecting pathogens in lakes and reservoirs. Environmental Science & Technology, 39(22), 8614–8621. doi:10.1021/es050821+.

    Article  CAS  Google Scholar 

  • Coulter, B. (2007). Instructions for using the gh-3.8 swinging bucket rotor (p. 41). Fullerton: Beckman Coulter, Inc.

    Google Scholar 

  • Davies-Colley, R. J., & Smith, D. G. (2001). Turbidity suspended sediment, and water clarity: a review. Journal of the American Water Resources Association, 37. doi:10.1111/j.1752-1688.2001.tb03624.x.

  • Effler, S. W., Johnson, D. L., Jiao, J. F., & Perkins, M. (1992). Optical impacts and sources of suspended solids in onondaga creek, U.S.A. JAWRA Journal of the American Water Resources Association, 28, 251–262. doi:10.1111/j.1752-1688.1992.tb03991.x.

    Article  Google Scholar 

  • Foster, G., Young, R., & Neibling, W. (1985). Sediment composition for nonpoint source pollution analyses. Transactions of the ASAE-American Society of Agricultural Engineers (USA).

  • Gao, P., Pasternack, G., Bali, K., & Wallender, W. (2008). Estimating suspended sediment concentration using turbidity in an irrigation-dominated southeastern california watershed. Journal of Irrigation and Drainage Engineering, 134(2), 250–259. doi:10.1061/(ASCE)0733-9437(2008)134:2(250).

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis1. In A. Klute (Ed.), Methods of soil analysis: Part 1—Physical and mineralogical methods (pp. 383–411, SSSA Book Series): Soil Science Society of America, American Society of Agronomy.

  • Gerlach, R. W., & Nocerino, J. M. (2003). Guidance for obtaining representative laboratory analytical subsamples from particulate laboratory samples: US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Environmental Sciences Division.

  • Gippel, C. J. (1995). Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrological Processes, 9(1), 83–97. doi:10.1002/hyp.3360090108.

    Article  Google Scholar 

  • Hach, C. (2006). Hydrolab DS5X, DS5, and MS5 Water Quality Multiprobles, User Manual (3rd ed., p. 74). Ludwigstrasse 16, Germany: OTT Hydromet GmbH.

    Google Scholar 

  • Harp, S. L., Barfield, B. J., Hayes, J. C., Yeri, S., & Chalavadi, M. (2008). SEDPRO modeling of BMP effectiveness at construction sites. Paper presented at the World Environmental and Water Resources Congress 2008: Ahupua’a, May 12, 2008–May 16, 2008, Honolulu, HI, United States.

  • Hathaway, J. C. (1956). Procedure for clay mineral analysis used in the sedimentary petrology laboratory of the US Geological Survey. Clay Minerals Bulletin, 3, 8–13.

    Article  Google Scholar 

  • Hazelton, P. D., & Grossman, G. D. (2009). The effects of turbidity and an invasive species on foraging success of rosyside dace (Clinostomus funduloides). Freshwater Biology, 54(9), 1977–1989. doi:10.1111/j.1365-2427.2009.02248.x.

    Article  Google Scholar 

  • Henley, W., Patterson, M., Neves, R., & Lemly, A. D. (2000). Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science, 8(2), 125–139.

    Article  Google Scholar 

  • Holliday, C., Rasmussen, T. C., & Miller, W. P. (2003). Establishing the relationship between turbidity and total suspended sediment concentration. In Proceedings of the 2003 Georgia Water Resources Conference, (pp. 23–24): The University of Georgia, Institute of Ecology Georgia.

  • Holstrom, T. A., & Hawkins, R. H. (1980). Particle size distribution effects on turbidity. In Symposium on Watershed Management, Boise, Idaho, 1980 (pp. 283–297). New York: Committee on Watershed Management of the Irrigation and Drainage Division, American Society of Civil Engineers.

    Google Scholar 

  • Hoomehr, S., & Schwartz, J. S. (2012). Evaluating SEDCAD model performance on reclaimed coal mine lands in East Tennessee. Journal of Irrigation and Drainage Engineering, 139(3), 261–266.

    Article  Google Scholar 

  • Johnson, C., Flowers, A., Noriea, N., Zimmerman, A., Bowers, J., DePaola, A., et al. (2010). Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico. Applied and Environmental Microbiology, 76(21), 7076–7084.

    Article  CAS  Google Scholar 

  • Jones, A. S., Stevens, D. K., Horsburgh, J. S., & Mesner, N. O. (2011). Surrogate measures for providing high frequency estimates of total suspended solids and total phosphorus concentrations. JAWRA Journal of the American Water Resources Association, 47, 239–253. doi:10.1111/j.1752-1688.2010.00505.

    Article  CAS  Google Scholar 

  • Kim, J., & Furumai, H. (2013). Improved calibration of a rainfall-pollutant-runoff model using turbidity and electrical conductivity as surrogate parameters for total nitrogen. Water and Environment Journal, 27(1), 79–85. doi:10.1111/j.1747-6593.2012.00328.x.

    Article  CAS  Google Scholar 

  • Kirk, J. O. (1985). Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems. Hydrobiologia, 125(1), 195–208. doi:10.1007/BF00045935.

    Article  Google Scholar 

  • Kirk, K. L. (1991). Suspended clay reduces Daphnia feeding rate. Freshwater Biology, 25(2), 357–365. doi:10.1111/j.1365-2427.1991.tb00498.x.

    Article  Google Scholar 

  • LeChevallier, M. W., & Norton, W. D. (1992). Examining relationships between particle counts and Giardia, Cryptosporidium, and turbidity. Journal (American Water Works Association), 54–60.

  • Lewis, J. (1996). Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resources Research, 32(7), 2299–2310. doi:10.1029/96wr00991.

    Article  Google Scholar 

  • Line, D., Hall, K., & Blackwell, J. (2013). Estimating suspended solids from turbidity in the robeson creek, NC watershed. JAWRA Journal of the American Water Resources Association, 49(6), 1412–1420.

    Article  Google Scholar 

  • Lloyd, D. S. (1987). Turbidity as a water quality standard for salmonid habitats in Alaska. North American Journal of Fisheries Management, 7(1), 34–45.

    Article  Google Scholar 

  • Marttila, H., & Kløve, B. (2012). Use of turbidity measurements to estimate suspended solids and nutrient loads from peatland forestry drainage. Journal of Irrigation and Drainage Engineering, 138(12), 1088–1096. doi:10.1061/(ASCE)IR.1943-4774.0000509.

    Article  Google Scholar 

  • Microsoft. (2010). Microsoft Excel (Vol. Service Pack 1): Microsoft Corporation.

  • Minella, J. P., Merten, G. H., Reichert, J. M., & Clarke, R. T. (2008). Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrological Processes, 22(12), 1819–1830.

    Article  Google Scholar 

  • Minitab. (2010). Minitab 16 Statistical Software. State College: Minitab, Inc.

    Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. doi:10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • NCSS. (2000). Kamie series.National Cooperative Soil Survey, USDA Natural Resources Conservation Service, U.S.A. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/K/KAMIE.html. Accessed 4 July 2015.

  • NCSS. (2004a). Port series.National Cooperative Soil Survey, USDA Natural Resources Conservation Service, U.S.A. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/P/PORT.html. Accessed 4 July 2015.

  • NCSS. (2004b). Norge series.National Cooperative Soil Survey, USDA Natural Resources Conservation Service, U.S.A. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/N/NORGE.html. Accessed 4 July 2015.

  • NCSS. (2007). Cecil series.National Cooperative Soil Survey, USDA Natural Resources Conservation Service, U.S.A. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/C/CECIL.html. Accessed 4 July 2015.

  • NCSS. (2008). Pacolet series.National Cooperative Soil Survey, USDA Natural Resources Conservation Service, U.S.A. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/P/PACOLET.html. Accessed 4 July 2015.

  • NCSS. (2014). Stephenville series.National Cooperative Soil Survey, USDA Natural Resources Conservation Service, U.S.A. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/S/STEPHENVILLE.html. Accessed 4 July 2015.

  • Packman, J.J., Comings, K. J., & Booth, D. B.(1999). Using turbidity to determine total suspended solids in urbanizing streams in the Puget Lowlands: in Confronting Uncertainty: Managing Change in Water Resources and the Environment, Canadian Water Resources Association annual meeting, Vancouver, BC, 27–29 October 1999, p. 158–165.

  • Parmelee, C. L., & Ellms, J. W. (1899). On rapid methods for the estimation of the weight of suspended matters in turbid waters. Technology Quartery and Proceedings of Society of Arts, XII(2), 20.

    Google Scholar 

  • Patil, S. S. (2010). Turbidity modeling based on the concentration of total suspended solids for stormwater runoff from construction Sites. Master’s Thesis, Oklahoma State University.

  • Pavanelli, D., & Bigi, A. (2005). Indirect methods to estimate suspended sediment concentration: reliability and relationship of turbidity and settleable solids. Biosystems Engineering, 9(1), 75–83. doi:10.1016/j.biosystemseng.2004.09.001.

    Article  Google Scholar 

  • Perkins, R., Hansen, B., Wilson, B., & Gulliver, J. (2014). Development and Evaluation of Effective Turbidity Monitoring Methods for Construction Projects, Bruce Wilson, Principal Investigator. In U. o. M. Departments of Bioproducts/Biosystems and Civil Engineering (Ed.), (pp. 158): Minnesota Department of Transportation.

  • Pflüger, Y., Rackham, A., & Larned, S. (2010). The aesthetic value of river flows: an assessment of flow preferences for large and small rivers. Landscape and Urban Planning, 95(1), 68–78.

    Article  Google Scholar 

  • Riley, S. (1998). The sediment concentration–turbidity relation: its value in monitoring at Ranger Uranium Mine, Northern Territory, Australia. CATENA, 32, 1–14.

    Article  CAS  Google Scholar 

  • Rügner, H., Schwientek, M., Beckingham, B., Kuch, B., & Grathwohl, P. (2013). Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environmental Earth Sciences, 69(2), 373–380. doi:10.1007/s12665-013-2307-1.

    Article  Google Scholar 

  • Rügner, H., Schwientek, M., Egner, M., & Grathwohl, P. (2014). Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory. Science of the Total Environment, 490, 191–198.

    Article  Google Scholar 

  • Ruzycki, E., Axler, R., Henneck, J., Will, N., & Host, G. (2011). Estimating mercury concentrations and loads from four western Lake Superior watersheds using continuous in-stream turbidity monitoring. Aquatic Ecosystem Health & Management, 14(4), 422–432.

    Article  CAS  Google Scholar 

  • Ruzycki, E. M., Axler, R. P., Host, G. E., Henneck, J. R., & Will, N. R. (2014). Estimating sediment and nutrient loads in four Western Lake Superior streams. JAWRA Journal of the American Water Resources Association, 50(5), 1138–1154. doi:10.1111/jawr.12175.

    Article  Google Scholar 

  • Slaets, J. I., Schmitter, P., Hilger, T., Lamers, M., Piepho, H.-P., Vien, T. D., et al. (2014). A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds. Journal of Hydrology, 513, 45–57.

    Article  CAS  Google Scholar 

  • Smith, D. G., Croker, G. F., & McFarlane, K. (1995). Human perception of water appearance: 1. Clarity and colour for bathing and aesthetics. New Zealand Journal of Marine and Freshwater Research, 29(1), 29–43.

    Article  Google Scholar 

  • Soil Survey Division Staff. (1993). Soil survey manual. Soil Conservation Service.U.S. Department of Agriculture Handbook 18.

  • Soil Survey Staff. (2011). Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available online: http://sdmdataaccess.nrcs.usda.gov/. Accessed 10 October 2011.

  • Sun, H., Cornish, P. S., & Daniell, T. M. (2001). Turbidity-based erosion estimation in a catchment in South Australia. Journal of Hydrology, 253(1–4), 227–238. doi:10.1016/S0022-1694(01)00475-9.

    Article  Google Scholar 

  • Teixeira, E. C., & Caliari, P. C. (2005). Estimation of the concentration of suspended solids in rivers from turbidity measurement: error assessment. Sediment Budgets, 1, 151–160.

    Google Scholar 

  • USEPA. (1999). Guidance manual for compliance with the interim enhanced surface water treatment rule: turbiidty provisions. United States Environmental Protection Agency.

  • USEPA. (2009). Environmental Impact and Benefits Assessment for Final Effluent Guidelines and Standards for the Construction and Development Category. In U. S. E. P. Agency (Ed.). 1200 Pennsylvania Avenue, NW, Washington, DC 20460: U.S. Environmental Protection Agency Office of Water (4303T).

  • USEPA. (2014). Effluent Limitations Guidelines and Standards for the Construction and Development Point Source Category, Final Rule. In U. S. E. P. Agency (Ed.), EPA–HQ–OW–2010–0884; FRL–9906–51–OW; RIN 2040–AF44 (Vol. 40 CFR Part 450: , pp. 6): Federal Registar.

  • Warner, R., & Sturm, T. (2002). Turbidity as a surrogate to estimate the effluent suspended sediment concentration of sediment controls at a construction site in the southeastern united states. In Proceedings of the Federal Interagency workshop on Turbidity and Other Surrogates. Reno NV April, 2002.

  • Warner, R. C., Schwab, P., & Marshall, D. (1998). SEDCAD 4 for Windows 95/98 & NT, Design Manual and User’s Guide. Civil Software Design, Ames, IA.

  • Wass, P. D., Marks, S. D., Finch, J. W., Leeks, G. J. L., Wass, P. D., Marks, S. D., Finch, J. W., Leeks, G. J. L., Wass, P. D., Marks, S. D., Finch, J. W., Leeks, G. J. L., & Ingram, J. K. (1997). Monitoring and preliminary interpretation of in-river turbidity and remote sensed imagery for suspended sediment transport studies in the Humber catchment. Science of the Total Environment, 194–195(0), 263–283. doi:10.1016/S0048-9697(96)05370-3.

    Article  Google Scholar 

  • Williamson, T. N., & Crawford, C. G. (2011). Estimation of suspended‐sediment concentration from total suspended solids and turbidity data for Kentucky, 1978–19951. JAWRA Journal of the American Water Resources Association, 47(4), 739–749.

    Article  CAS  Google Scholar 

  • Zabaleta, A., Martínez, M., Uriarte, J. A., & Antigüedad, I. (2007). Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque Country. CATENA, 71(1), 179–190. doi:10.1016/j.catena.2006.06.007.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the Oklahoma Department of Transportation Research Program, the Oklahoma Transportation Center, and Woolpert, Inc. The authors would like to thank Magen Kegley, Riley Jones, and Hanna Huling for assistance in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Vogel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, S., Vogel, J.R., Storm, D.E. et al. Development of a Turbidity Prediction Methodology for Runoff–Erosion Models. Water Air Soil Pollut 226, 415 (2015). https://doi.org/10.1007/s11270-015-2679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2679-9

Keywords

Navigation