Skip to main content
Log in

Dietary Reliance on Benthic Primary Production as a Predictor of Mercury Accumulation in Freshwater Fish and Turtles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The feeding ecology of a species can affect the transfer and accumulation of contaminants such as mercury (Hg). Modeling the accumulation of Hg through food webs can help identify which animals are likely to be burdened by elevated Hg concentrations. In lakes, most of the Hg is sequestered in the sediments. Therefore, species ultimately relying on benthic primary production may experience a greater trophic transfer of Hg relative to species that rely on pelagic primary production. This hypothesis was tested in a simple food web using muscle tissue collected from three species of fish (Lepomis gibbosus, Notropis heterodon, and Labidesthes sicculus) and blood from two species of turtles (Sternotherus odoratus and Chrysemys picta) that differ in reliance on benthic primary production. Averaged multiple linear regression models were used to predict Hg concentrations in the five consumers with respect to reliance on benthic primary production, while controlling for other factors known to influence Hg accumulation (sex, size, lake, species identity, and trophic level). A positive and significant relationship was found between Hg burden and dietary reliance on benthic primary production, animal length, trophic level, and species identity in fish. In turtles, the relationship between Hg burden and dietary reliance on benthic primary production was not significant, but trophic level, animal length, and species identity significantly influenced Hg burden. Overall, reliance on benthic primary production was an important predictor of Hg burden for fish, but not for turtles. Future attempts to model Hg accumulation in similar study systems and/or fish species should include dietary reliance on benthic primary production as a predictor variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, O. R. J., Phillips, R. A., McDonald, R. A., Shore, R. F., McGill, R. A. R., & Bearhop, S. (2009). Influence of trophic position and foraging range on mercury levels within a seabird community. Marine Ecology: Progress Series, 375, 277–288.

    Article  CAS  Google Scholar 

  • Atwell, L., Hobson, K. A., & Welch, H. E. (1998). Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55(5), 1114–1121. doi:10.1139/cjfas-55-5-1114.

    Article  CAS  Google Scholar 

  • Aubail, A., Teilmann, J., Dietz, R., Rigét, F., Harkonen, T., Karlsson, O., et al. (2011). Investigation of mercury concentrations in fur of phocid seals using stable isotopes as tracers of trophic levels and geographical regions. Polar Biology, 34(9), 1411–1420.

    Article  Google Scholar 

  • Avens, L., & Snover, M. L. (2013). Age and age estimation in sea turtles. In J. Wyneken et al. (Eds.), The biology of sea turtles, volume 3 (CRC Marine Biology Series, pp. 97–133).

    Chapter  Google Scholar 

  • Barton, K. (2015). Multi-model inference. R Package version 1.15.1.

    Google Scholar 

  • Bergeron, C. M., Husak, J. F., Unrine, J. M., Romanek, C. S., & Hopkins, W. A. (2007). Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environmental Toxicology and Chemistry, 26(8), 1733–1741.

    Article  CAS  Google Scholar 

  • Boudou, A., & Ribeyre, F. (1997). Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels. Environmental Health Perspectives, 105(Suppl 1), 21.

    Article  CAS  Google Scholar 

  • Buckley, D. E. (1986). Bioenergetics of age-related versus size-related reproductive tactics in female Viviparus georgianus. Biological Journal of the Linnean Society, 27(4), 293–309.

    Article  Google Scholar 

  • Bulté, G., & Blouin-Demers, G. (2008). Northern map turtles (Graptemys geographica) derive energy from the pelagic pathway through predation on zebra mussels (Dreissena polymorpha). Freshwater Biology, 53(3), 497–508.

    Article  Google Scholar 

  • Burnham, K., & Anderson, D. (2002). Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (2nd ed.). New York: Springer Verlag.

    Google Scholar 

  • Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46(2), 443–453.

    Article  CAS  Google Scholar 

  • Day, R. D., Christopher, S. J., Becker, P. R., & Whitaker, D. W. (2005). Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environmental Science and Technology, 39(2), 437–446.

    Article  CAS  Google Scholar 

  • Depew, D. C., Burgess, N. M., Anderson, M. R., Baker, R., Bhavsar, S. P., Bodaly, R., et al. (2013). An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Canadian Journal of Fisheries and Aquatic Sciences, 70(3), 436–451.

    Article  CAS  Google Scholar 

  • Dessauer, H. C. (1970). Blood chemistry of reptiles: physiological and evolutionary aspects. Biology of Reptilia, 3(1), 1–72.

    CAS  Google Scholar 

  • Dyer, S. M., & Cervasio, E. L. (2008). An overview of restraint and blood collection techniques in exotic pet practice. The Veterinary Clinics of North America. Exotic Animal Practice, 11(3), 423–443.

    Article  Google Scholar 

  • Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E., & Anderson, N. L. (2008). Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging. Ecological Applications, 18(sp8), A196–A212.

    Article  Google Scholar 

  • Eisler, R. (1987). Mercury hazards to fish, wildlife, and invertebrates: a synoptic review (U.S. Fish and Wildlife Service Biological Report, 85(1.10)). Laurel, MD: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Ernst, C., & Barbour, R. (1972). Turtles of the United States. Lexington, KT: The University Press of Kentucky.

    Google Scholar 

  • France, R. (1995). Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology: Progress Series, 124(1), 307–312.

    Article  Google Scholar 

  • Furutani, A., & Rudd, J. W. (1980). Measurement of mercury methylation in lake water and sediment samples. Applied and Environmental Microbiology, 40(4), 770–776.

    CAS  Google Scholar 

  • Golet, W. J., & Haines, T. A. (2001). Snapping turtles (Chelydra serpentina) as monitors for mercury contamination of aquatic environments. Environmental Monitoring and Assessment, 71(3), 211–220.

    Article  CAS  Google Scholar 

  • Grieb, T. M., Bowie, G. L., Driscoll, C. T., Gloss, S. P., Schofield, C. L., & Porcella, D. B. (1990). Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environmental Toxicology and Chemistry, 9(7), 919–930.

    Article  CAS  Google Scholar 

  • Hecky, R., & Hesslein, R. (1995). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 631–653.

  • Hogan, L. S., Marschall, E., Folt, C., & Stein, R. A. (2007). How non-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. Journal of Great Lakes Research, 33(1), 46–61.

    Article  CAS  Google Scholar 

  • Hopkins, B. C., Willson, J. D., & Hopkins, W. A. (2013). Mercury exposure is associated with negative effects on turtle reproduction. Environmental Science and Technology, 47(5), 2416–2422.

    Article  CAS  Google Scholar 

  • Hopkins, J. B., III, & Ferguson, J. M. (2012). Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE, 7(1), e28478.

    Article  CAS  Google Scholar 

  • Horgan, M. J., & Mills, E. L. (1997). Clearance rates and filtering activity of zebra mussel (Dreissena polymorpha): implications for freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54(2), 249–255.

    Article  Google Scholar 

  • Kelly, C. A., Rudd, J. W., St Vincent, L. L., & Heyes, A. (1995). Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems? Water, Air, and Soil Pollution, 80, 715–724.

    Article  CAS  Google Scholar 

  • Kidd, K. A., Muir, D. C. G., Evans, M. S., Wang, X., Whittle, M., Swanson, H. K., et al. (2012). Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Science of the Total Environment, 438, 135–143.

    Article  CAS  Google Scholar 

  • Kinsella, J., Shimp, J., Mai, J., & Weihrauch, J. (1977). Sterol, phospholipid, mineral content and proximate composition of filets of select freshwater fish species. Journal of Food Biochemistry, 1(2), 131–140.

    Article  CAS  Google Scholar 

  • Lavoie, R. A., Hebert, C. E., Rail, J.-F., Braune, B. M., Yumvihoze, E., Hill, L. G., et al. (2010). Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Science of the Total Environment, 408(22), 5529–5539.

    Article  CAS  Google Scholar 

  • Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environmental Science and Technology, 47(23), 13385–13394.

    Article  CAS  Google Scholar 

  • MacAvoy, S. E., Arneson, L. S., & Bassett, E. (2006). Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia, 150(2), 190–201.

    Article  Google Scholar 

  • Meyer, E., Eagles-Smith, C. A., Sparling, D., & Blumenshine, S. (2014). Mercury exposure associated with altered plasma thyroid hormones in the declining Western Pond Turtle (Emys marmorata) from California mountain streams. Environmental Science and Technology, 48, 2989–96.

    Article  CAS  Google Scholar 

  • Moll, E. O. (1973). Latitudinal and intersubspecific variation in reproduction of the painted turtle, Chrysemys picta. Herpetologica, 29, 307–318.

    Google Scholar 

  • Mommsen, T. P. (2001). Paradigms of growth in fish. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology, 129(2), 207–219.

    Article  CAS  Google Scholar 

  • Parnell, A., & Jackson, A. (2008). SIAR: stable isotope analysis in R. R package version 3.

    Google Scholar 

  • Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 293–320.

  • Phillips, D. L., & Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia, 130(1), 114–125.

    Article  Google Scholar 

  • Pinnegar, J., & Polunin, N. (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13(2), 225–231.

    Article  Google Scholar 

  • Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83(3), 703–718.

    Article  Google Scholar 

  • Post, D. M., Layman, C. A., Arrington, D. A., Takimoto, G., Quattrochi, J., & Montana, C. G. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152(1), 179–189.

    Article  Google Scholar 

  • Power, M., Klein, G., Guiguer, K., & Kwan, M. (2002). Mercury accumulation in the fish community of a sub‐Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39(5), 819–830.

    Article  CAS  Google Scholar 

  • Riva-Murray, K., Bradley, P. M., Chasar, L. C., Button, D. T., Brigham, M. E., Eikenberry, B. C. S., et al. (2013). Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA. Ecotoxicology, 22(1), 60–71.

    Article  CAS  Google Scholar 

  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36(1), 12–19.

    Article  CAS  Google Scholar 

  • Scott, W. B., & Crossman, E. J. (1973). Freshwater fishes of Canada (p. 184). Ottawa: Fisheries Research. Board of Canada.

    Google Scholar 

  • Scott, W. B., & Crossman, E. J. (1974). Poissons d'eau douce du Canada: Service des pêches et des sciences de la mer, Ministère de l'Environnement.

    Google Scholar 

  • Seminoff, J. A., Bjorndal, K. A., & Bolten, A. B. (2007). Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta: Insights for trophic study of freshwater turtles. Copeia, 2007(3), 534–542.

    Article  Google Scholar 

  • Sorensen, J. A., Glass, G. E., Schmidt, K. W., Huber, J. K., & Rapp, G. R., Jr. (1990). Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty northern Minnesota lakes. Environmental Science and Technology, 24(11), 1716–1727.

    Article  CAS  Google Scholar 

  • Sparling, D. W., & Gorsuch, J. W. (2010). Ecotoxicology of amphibians and reptiles. Boca Raton: CRC Press/Taylor & Francis.

    Book  Google Scholar 

  • Stuyt, S. S. M., Chapman, E. E. V., & Campbell, L. M. (2015). Lake and watershed influences on the distribution of elemental contaminants in the Rideau Canal System, a UNESCO world heritage site. Environmental Science and Pollution Research International, 22(15), 11558–73.

    Article  CAS  Google Scholar 

  • Syväranta, J., Haemaelaeinen, H., & Jones, R. I. (2006). Within‐lake variability in carbon and nitrogen stable isotope signatures. Freshwater Biology, 51(6), 1090–1102.

    Article  Google Scholar 

  • Van der Velden, S., Dempson, J., Evans, M., Muir, D., & Power, M. (2013). Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Science of the Total Environment, 444, 531–542.

    Article  Google Scholar 

  • Wang, R., & Wang, W.-X. (2010). Importance of speciation in understanding mercury bioaccumulation in tilapia controlled by salinity and dissolved organic matter. Environmental Science and Technology, 44(20), 7964–7969.

    Article  CAS  Google Scholar 

  • Wang, W.-X., & Fisher, N. S. (1999). Delineating metal accumulation pathways for marine invertebrates. Science of the Total Environment, 237, 459–472.

    Article  Google Scholar 

  • Weed, R., Eber, J., & Rothstein, A. (1962). Interaction of mercury with human erythrocytes. Journal of General Physiology, 45(3), 395–410.

    Article  CAS  Google Scholar 

  • Yu, X., Driscoll, C. T., Montesdeoca, M., Evers, D., Duron, M., Williams, K., et al. (2011). Spatial patterns of mercury in biota of Adirondack, New York lakes. Ecotoxicology, 20(7), 1543–1554.

    Article  CAS  Google Scholar 

  • Zhang, L., Campbell, L. M., & Johnson, T. B. (2012). Seasonal variation in mercury and food web biomagnification in Lake Ontario, Canada. Environmental Pollution, 161, 178–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to G. Slevan-Tremblay, M. Salaun-Miller, M. Brown, and C. Stewart for their help in the field and in the laboratory. We appreciated logistical support from the staff of the Queen’s University Biological Station. We sincerely appreciate the work that was performed in the G.G. Hatch Stable Isotope Laboratory and the Poulain Laboratory at the University of Ottawa for all sample analyses. We are also very thankful for the helpful comments provided by F. Pick and J. Blais on the MSc thesis from which this manuscript arose. Finally, this study was made possible with the financial and logistical support of Parks Canada and of the University of Ottawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Châteauvert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Châteauvert, J.L., Bulté, G., Poulain, A.J. et al. Dietary Reliance on Benthic Primary Production as a Predictor of Mercury Accumulation in Freshwater Fish and Turtles. Water Air Soil Pollut 226, 337 (2015). https://doi.org/10.1007/s11270-015-2610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2610-4

Keywords

Navigation