Skip to main content
Log in

Pyrene Metabolism by New Species Isolated from Soil Rhizoctonia Zeae SOL3

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Rhizoctonia zeae SOL3 fungus was isolated from contaminated soil based on its ability to decolorize remazol brilliant blue R in solid medium. This fungus has been used to degrade pyrene a four-ring polycyclic aromatic hydrocarbon. R. zeae SOL3 could biodegrade pyrene as a sole source of carbon and energy. Different parameters were investigated to study their effect on the biodegradation rate. The highest biodegradation rate reached at 28 °C, non-agitated culture, 20 g/L glucose, 24 g/L NaCl, and 20 mg/L pyrene. The metabolites of pyrene were detected by thin layer chromatography (TLC) and confirmed by gas chromatography–mass spectrometry (GC-MS), which were identified as benzoic acid, 4-hydroxybenzoic acid and botanic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anastasi, A., Coppola, T., Prigione, V., & Varese, G. (2009). Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. Journal of Hazardous Materials, 165, 1229–1233.

    Article  CAS  Google Scholar 

  • Andersson, B. E., & Henrysson, T. (1996). Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Applied Microbiology and Biotechnology, 46, 647–652.

    Article  CAS  Google Scholar 

  • Bishnoi, K., Kumar, R., & Bishnoi, N. R. (2008). Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. Journal of Scientific and Industrial Research, 67, 538–554.

    CAS  Google Scholar 

  • Canet, R., Birnstingl, J. G., Malcolm, D. G., Lopez-Real, J. M., & Beck, A. J. (2001). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresource Technology, 76, 113–117.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3, 351–368.

    Article  CAS  Google Scholar 

  • Ceyhan, N. (2012). Biodegradation of pyrene by a newly isolated Proteus vulgaris. Scientific Research and Essays, 7, 66–77.

    CAS  Google Scholar 

  • Črešnar, B., & Petrič, Š. (2011). Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814, 29–35.

    Article  Google Scholar 

  • Deng, W., Li, X. G., Li, S. Y., Ma, Y. Y., & Zhang, D. H. (2013). Source apportionment of polycyclic aromatic hydrocarbons in surface sediment of mud areas in the East China Sea using diagnostic ratios and factor analysis. Marine Pollution Bulletin, 70, 266–273.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2012). Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresource Technology, 107, 314–318.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2013). Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess and Biosystems Engineering, 36, 461–468.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Khudhair, A.B..., & Salim, M.R. (2012). Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus polyporus sp. S133. Water, Air, & Soil Pollution 223, 2201-2208. doi:10.1007/s11270-011-1016-1

  • Han, B. H., Choi, H.-W., & Song, H.-G. (2004). Degradation of phenanthrene by Trametes versicolor and its laccase. The Journal of Microbiology, 42, 94–98.

    CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169, 1–15.

    Article  CAS  Google Scholar 

  • Hwang, S. S., & Song, H.-G. (1999). Biodegradation of pyrene in marine environment. The Korean Journal of Microbiology, 35, 53–60.

    Google Scholar 

  • Kerr, R. P., & Capone, D. G. (1988). The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Marine Environmental Research, 26, 181–198.

    Article  CAS  Google Scholar 

  • Lamar, R. T. (1992). The role of fungal lignin-degrading enzymes in xenobiotic degradation. Current Opinion in Biotechnology, 3, 261–266.

    Article  CAS  Google Scholar 

  • Lange, B., Kremer, S., Sterner, O., & Anke, H. (1994). Pyrene metabolism in Crinipellis stipitaria: identification of trans-4,5-dihydro-4,5-dihydroxypyrene and 1-pyrenylsulfate in strain JK364. Applied and Environmental Microbiology, 60, 3602–3607.

    CAS  Google Scholar 

  • Launen, L. A., Pinto, L. J., Percival, P. W., Lam, S. F. S., & Moore, M. M. (2000). Pyrene is metabolized to bound residues by Penicillium janthinellum SFU403. Biodegradation, 11, 305–312.

    Article  CAS  Google Scholar 

  • Leiner, R. H., & Carling, D. E. (1994). Characterization of Waitea circinata (Rhizoctonia) isolated from agricultural soils in Alaska. Plant Disease, 78, 385–388.

    Article  Google Scholar 

  • Liu, X., Zhang, J., Jiang, J., Li, R., Xie, Z., & Li, S. (2011). Biochemical degradation pathway of reactive blue 13 by Candida rugopelliculosa HXL-2. International Biodeterioration & Biodegradation, 65, 135–141.

    Article  CAS  Google Scholar 

  • Ma, J., Xu, L., & Jia, L. (2013). Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr -1 isolated from active sewage sludge. Bioresource Technology, 140, 15–21.

    Article  CAS  Google Scholar 

  • Machado, K. M. G., Compart, L. C. A., Morais, R. O., Rosa, L. H., & Santos, M. H. (2006). Biodegradation of reactive textile dyes by basidomycetems fungi from Brazilian ecosystems. Brazilian Journal of Microbiology, 37, 481–487.

    Article  CAS  Google Scholar 

  • Matsuda, Y., Sugiyama, F., Nakanishi, K., & Ito, S. (2006). Effects of sodium chloride on growth of ectomycorrhizal fungal isolates in culture. Mycoscience, 47, 212–217.

    Article  CAS  Google Scholar 

  • Muratova, A., Pozdnyakova, N., Makarov, O., Baboshin, M., Baskunov, B., Myasoedova, N., Golovleva, L., & Turkovskaya, O. (2014). Degradation of phenanthrene by the rhizobacterium Ensifer meliloti. Biodegradation, 25, 787–795.

    Article  CAS  Google Scholar 

  • Orbea, A., Ortiz-Zarragoitia, M., Solé, M., Porte, C., & Cajaraville, M. P. (2002). Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquatic Toxicology, 58, 75–98.

    Article  CAS  Google Scholar 

  • Peng, R. H., Xiong, A. S., Xue, Y., Fu, X. Y., Gao, F., Zhao, W., Tian, Y. S., & Yao, Q. H. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiology Reviews, 32, 927–955.

    Article  CAS  Google Scholar 

  • Romero, M. C., Salvioli, M. L., Cazau, M. C., & Arambarri, A. M. (2002). Pyrene degradation by yeasts and filamentous fungi. Environmental Pollution, 117, 159–163.

    Article  CAS  Google Scholar 

  • Sarma, P. M., Duraja, P., Deshpande, S., & Lal, B. (2010). Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040. Biodegradation, 21, 59–69.

    Article  CAS  Google Scholar 

  • Silva, I. S., Grossman, M., & Durrant, L. R. (2009). Degradation of polycyclic aromatic hydrocarbons (2-7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. International Biodeterioration & Biodegradation, 63, 224–229.

    Article  CAS  Google Scholar 

  • Song, H.-G. (1999). Comparison of pyrene biodegradation by white rot fungi. World Journal of Microbiology and Biotechnology, 15, 669–672.

    Article  CAS  Google Scholar 

  • Takeuchi, H. (2013). Structures, stability, and growth sequence patterns of small homoclusters of naphthalene, anthracene, phenanthrene, phenalene, naphthacene, and pyrene. Computational and Theoretical Chemistry, 1021, 84–90.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Tang, M., Sheng, M., Chen, H., & Zhang, F. F. (2009). In vitro salinity resistance of three ectomycorrhizal fungi. Soil Biology and Biochemistry, 41, 948–953.

    Article  CAS  Google Scholar 

  • Telmadarrehei, T., Ghanbary, M. A. T., Rahimian, H., Rezazadeh, A., & Javadi, M. A. (2011). Isolation and some pathologic properties of rhizoctonia zeae from cultural soils of golestan and Mazandaran provinces, Iran. World Applied Sciences Journal, 14, 374–377.

    Google Scholar 

  • Tresner, H. D., & Hayes, J. A. (1971). Sodium chloride tolerance of terrestrial fungi. Journal of Applied Microbiology, 22, 210.

    CAS  Google Scholar 

  • Valentín, L., Feijoo, G., Moreira, M. T., & Lema, J. M. (2006). Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. International Biodeterioration & Biodegradation, 58, 15–21.

    Article  Google Scholar 

  • van der Wal, A., van Veen, J. A., Pijl, A. S., Summerbell, R. C., & de Boer, W. (2006). Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils. Soil Biology and Biochemistry, 38, 2890–2902.

    Article  Google Scholar 

  • Venkatadri, R., & Irvine, R. L. (1990). Effect of agitation on ligninase activity and ligninase production by phanerochaete chrysosporium. Applied and Environmental Microbiology, 56, 2684–2691.

    CAS  Google Scholar 

  • Wen, J., Gao, D., Zhang, B., & Liang, H. (2011). Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. International Biodeterioration & Biodegradation, 65, 600–604.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In A. I. Michael, H. G. David, J. S. John, D. H. G. J. J. S. Thomas, J. White, A. Michael, A. Innis, & J. W. Thomas (Eds.), PCR Protocols (pp. 315–322). San Diego: Academic.

  • Windham, A. S., & Lucas, L. T. (1987). A qualitative baiting technique for selective isolation of Rhizoctonia zeae from soil. Phytopathology, 77, 712–714.

    Article  CAS  Google Scholar 

  • Woolard, C. R., & Irvine, R. L. (1995). Treatment of hypersaline wastewater in the sequencing batch reactor. Water Research, 29, 1159–1168.

    Article  CAS  Google Scholar 

  • Zhao, B., Zhu, L. and Gao, Y. (2005). A novel solubilization of phenanthrene using Winsor I micro emulsion-based sodium castor oil sulfate. Journal of Hazardous Materials, 119, 205–211.

Download references

Acknowledgments

This work was supported by Fundamental Research Grant Scheme (FRGS) of Ministry of High Education (MOHE). (Vote No. R.J130000.7809.4F465 and UTM Institutional Research Grant. (Vote No. Q.J130000.2509.06H93)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Badr Khudhair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudhair, A.B., Hadibarata, T., Yusoff, A.R.M. et al. Pyrene Metabolism by New Species Isolated from Soil Rhizoctonia Zeae SOL3. Water Air Soil Pollut 226, 186 (2015). https://doi.org/10.1007/s11270-015-2432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2432-4

Keywords

Navigation