Skip to main content
Log in

Arsenic Removal and Transformation by Pseudomonas sp. Strain GE-1-Induced Ferrihydrite: Co-precipitation Versus Adsorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Hundreds of millions of people are at risk from drinking arsenic (As)-contaminated groundwater in the world, making As removal from aquatic systems of utmost importance. However, characteristics of As removal by bacteria-induced ferrihydrite and coupled with redox processes are still not clear. Two-line ferrihydrite was formed in the presence of aerobic Fe(II)-oxidizing bacterium, Pseudomonas sp. strain GE-1. Arsenic co-precipitation with and adsorption onto ferrihydrite induced by Pseudomonas sp. strain GE-1 and redox processes of As were investigated. Results demonstrated that co-precipitation performed better in As(V) removal than As(III) removal, while adsorption showed higher capacity for As(III) removal. X-ray absorption near-edge spectroscopy (XANES) indicated that As(III) oxidation occurred in solid phases during co-precipitation and adsorption. Detection of As species in solution showed that As(V) was reduced to As(III) during co-precipitation, although no As(V) reduction occurred during adsorption. Arsenic immobilization by Pseudomonas sp. strain GE-1-induced ferrihydrite in the presence of the strains may be applied as an alternative remediation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam, M. S., Wu, Y., & Cheng, T. (2014). Silicate minerals as a source of arsenic contamination in groundwater. Water, Air, & Soil Pollution, 225(11), 1–15.

    Article  CAS  Google Scholar 

  • Amirbahman, A., Kent, D. B., Curtis, G. P., & Davis, J. A. (2006). Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials. Geochimica Et Cosmochimica Acta, 70(3), 533–547.

    Article  CAS  Google Scholar 

  • Banerjee, K., Amy, G. L., Prevost, M., Nour, S., Jekel, M., Gallagher, P. M., & Blumenschein, C. D. (2008). Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Research, 42(13), 3371–3378.

    Article  CAS  Google Scholar 

  • Berg, M., Luzi, S., Trang, P. T. K., Viet, P. H., Giger, W., & Stuben, D. (2006). Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environmental Science & Technology, 40(17), 5567–5573.

    Article  CAS  Google Scholar 

  • Bhandari, N., Reeder, R. J., & Strongin, D. R. (2011). Photoinduced oxidation of arsenite to arsenate on ferrihydrite. Environmental Science & Technology, 45(7), 2783–2789.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379(2–3), 109–120.

    Article  CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part 1: occurrence, toxicity, speciation, mobility. Acta Hydrochimica Et Hydrobiologica, 31(1), 9–18.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.

    Article  CAS  Google Scholar 

  • Fuller, C. C., Davis, J. A., & Waychunas, G. A. (1993). Surface chemistry of ferrihydrite. Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica Et Cosmochimica Acta, 57(10), 2271–2282.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234(1), 204–216.

    Article  CAS  Google Scholar 

  • Greenleaf, J. E., Cumbal, L., Staina, I., & SenGupta, A. K. (2003). Abiotic As(III) oxidation by hydrated Fe(III) oxide (HFO) microparticles in a plug flow columnar configuration. Process Safety and Environmental Protection, 81(B2), 87–98.

    Article  CAS  Google Scholar 

  • Guo, H., Stueben, D., & Berner, Z. (2007a). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53.

    Article  CAS  Google Scholar 

  • Guo, H., Stüben, D., & Berner, Z. (2007b). Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 22(5), 1039–1051.

    Article  CAS  Google Scholar 

  • Guo, H., Ren, Y., Liu, Q., Zhao, K., & Li, Y. (2013a). Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application. Environmental Science & Technology, 47(2), 1009–1016.

    Article  CAS  Google Scholar 

  • Guo, H. M., Liu, C., Lu, H., Wanty, R., Wang, J., & Zhou, Y. Z. (2013b). Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach. Geochimica Et Cosmochimica Acta, 112, 130–145.

    Article  CAS  Google Scholar 

  • Han, X., Li, Y.-L., & Gu, J.-D. (2011). Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions. Geochimica Et Cosmochimica Acta, 75(2), 368–379.

    Article  CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., & Ahmed, M. F. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.

    Article  CAS  Google Scholar 

  • Hohmann, C., Winkler, E., Morin, G., & Kappler, A. (2010). Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. Environmental Science & Technology, 44(1), 94–101.

    Article  CAS  Google Scholar 

  • Hug, S. J., & Leupin, O. (2003). Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environmental Science & Technology, 37(12), 2734–2742.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.

    Article  CAS  Google Scholar 

  • Jang, J.-H., & Dempsey, B. A. (2008). Coadsorption of arsenic(III) and arsenic(V) onto hydrous ferric oxide: effects on abiotic oxidation of arsenic(III), extraction efficiency, and model accuracy. Environmental Science & Technology, 42(8), 2893–2898.

    Article  CAS  Google Scholar 

  • Jang, M., Min, S. H., Kim, T. H., & Park, J. K. (2006). Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environmental Science & Technology, 40(5), 1636–1643.

    Article  CAS  Google Scholar 

  • Jessen, S., Larsen, F., Koch, C. B., & Arvin, E. (2005). Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environmental Science & Technology, 39(20), 8045–8051.

    Article  CAS  Google Scholar 

  • Jia, Y. F., & Demopoulos, G. P. (2005). Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs nitrate), added gypsum, and pH alteration. Environmental Science & Technology, 39(24), 9523–9527.

    Article  CAS  Google Scholar 

  • Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica Et Cosmochimica Acta, 71(7), 1643–1654.

    Article  CAS  Google Scholar 

  • Kappler, A., & Newman, D. K. (2004). Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochimica Et Cosmochimica Acta, 68(6), 1217–1226.

    Article  CAS  Google Scholar 

  • Karim, M. (2000). Arsenic in groundwater and health problems in Bangladesh. Water Research, 34(1), 304–310.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Research, 38(1), 17–26.

    Article  CAS  Google Scholar 

  • Kleinert, S., Muehe, E. M., Posth, N. R., Dippon, U., Daus, B., & Kappler, A. (2011). Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for As removal. Environmental Science & Technology, 45(17), 7533–7541.

    Article  CAS  Google Scholar 

  • Konhauser, K. O., Kappler, A., & Roden, E. E. (2011). Iron in microbial metabolisms. Elements, 7(2), 89–93.

    Article  CAS  Google Scholar 

  • Lin, S., Lu, D., & Liu, Z. (2012). Removal of As contaminants with magnetic γ-Fe2O3 nanoparticles. Chemical Engineering Journal, 211–212, 46–52.

    Article  Google Scholar 

  • Liu, Q., Guo, H., Li, Y., & Xiang, H. (2013). Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment. International Biodeterioration & Biodegradation, 76, 86–91.

    Article  CAS  Google Scholar 

  • Michel, F. M., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. A. A., Phillips, B. L., & Parise, J. B. (2007). The structure of ferrihydrite, a nanocrystalline material. Science, 316(5832), 1726–1729.

    Article  CAS  Google Scholar 

  • Morin, G., & Calas, G. (2006). Arsenic in soils, mine tailings, and former industrial sites. Elements, 2(2), 97–101.

    Article  CAS  Google Scholar 

  • Myneni, S. C. B., Traina, S. J., Waychunas, G. A., & Logan, T. J. (1998). Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica Et Cosmochimica Acta, 62(19-20), 3285–3300.

    Article  CAS  Google Scholar 

  • Okibe, N., & Johnson, D. B. (2011). A rapid ATP-based method for determining active microbial populations in mineral leach liquors. Hydrometallurgy, 108(3), 195–198.

    Article  CAS  Google Scholar 

  • Ona-Nguema, G., Morin, G., Wang, Y., Foster, A. L., Juillot, F., Calas, G., & Brown, G. E., Jr. (2010). XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O-2 via Fe2+-mediated reactions. Environmental Science & Technology, 44(14), 5416–5422.

    Article  CAS  Google Scholar 

  • O'Neil, M., Smith, A., Heckelman, P., & Budavari, S. (2001). The Merck index—an encyclopedia of chemicals, drugs, and biologicals (13th ed.). Whitehouse Station: Merck and Co, Inc.

    Google Scholar 

  • Paez-Espino, D., Tamames, J., de Lorenzo, V., & Canovas, D. (2009). Microbial responses to environmental arsenic. Biometals, 22(1), 117–130.

    Article  CAS  Google Scholar 

  • Pal, P., Chakrabortty, S., & Linnanen, L. (2014). A nanofiltration–coagulation integrated system for separation and stabilization of arsenic from groundwater. Science of the Total Environment, 476–477, 601–610.

    Article  Google Scholar 

  • Pedersen, H. D., Postma, D., & Jakobsen, R. (2006). Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica Et Cosmochimica Acta, 70(16), 4116–4129.

    Article  CAS  Google Scholar 

  • Picardal, F. W., Zaybak, Z., Chakraborty, A., Schieber, J., & Szewzyk, U. (2011). Microaerophilic, Fe(II)-dependent growth and Fe(II) oxidation by a Dechlorospirillum species. Fems Microbiology Letters, 319(1), 51–57.

    Article  CAS  Google Scholar 

  • Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.

    Article  CAS  Google Scholar 

  • Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science & Technology, 32(3), 344–349.

    Article  CAS  Google Scholar 

  • Root, R. A., Dixit, S., Campbell, K. M., Jew, A. D., Hering, J. G., & O'Day, P. A. (2007). Arsenic sequestration by sorption processes in high-iron sediments. Geochimica Et Cosmochimica Acta, 71(23), 5782–5803.

    Article  CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 71(2), 599–608.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Tamura, H., Goto, K., Yotsuyanagi, T., & Nagayama, M. (1974). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 21(4), 314–318.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, O. S., Viraraghavan, T., & Subramanian, K. S. (2003). Arsenic removal from drinking water using iron oxide-coated sand. Water, Air, and Soil Pollution, 142(1-4), 95–111.

    Article  CAS  Google Scholar 

  • Tokoro, C., Yatsugi, Y., Koga, H., & Owada, S. (2010). Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Environmental Science & Technology, 44(2), 638–643.

    Article  CAS  Google Scholar 

  • Tufano, K. J., & Fendorf, S. (2008). Confounding impacts of iron reduction on arsenic retention. Environmental Science & Technology, 42(13), 4777–4783.

    Article  CAS  Google Scholar 

  • Voegelin, A., & Hug, S. J. (2003). Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: An in situ ATR-FTIR study. Environmental Science & Technology, 37(5), 972–978.

    Article  CAS  Google Scholar 

  • Yang, L., Li, X., Chu, Z., Ren, Y., & Zhang, J. (2014). Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresource Technology, 156, 384–388.

    Article  CAS  Google Scholar 

  • Zhao, Z., Jia, Y., Xu, L., & Zhao, S. (2011). Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Research, 45(19), 6496–6504.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is financially supported by the National Natural Science Foundation of China (Nos. 41222020 and 41172224), the National Key Basic Research Development Program (973 Program, No. 2010CB428804), the Fundamental Research Funds for the Central Universities (No. 2652013028), and the Fok Ying-Tung Education Foundation, China (Grant No. 131017). The authors would like to thank the Shanghai Synchrotron Radiation Facility (Beamline BL15U) and its staff (X.H. Yu and A.G. Li) for allowing us to perform the XANES analysis. Dr. G.H. Shi is much acknowledged for his help in FTIR analysis. Dr. Michael Kersten is much acknowledged for his constructive comments which significantly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, W., Guo, H., Liu, Q. et al. Arsenic Removal and Transformation by Pseudomonas sp. Strain GE-1-Induced Ferrihydrite: Co-precipitation Versus Adsorption. Water Air Soil Pollut 226, 167 (2015). https://doi.org/10.1007/s11270-015-2408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2408-4

Keywords

Navigation