Skip to main content
Log in

Modeling Fluoride Adsorption on Cerium-Loaded Cellulose Bead—Response Surface Methodology, Equilibrium, and Kinetic Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel cerium-loaded cellulose nanocomposite bead (CCNB) is synthesized and tested for fluoride adsorption. The optimization of the process under the cooperative influence of different experimental variables was made employing response surface methodology (RSM). It is found from fractional factorial design (FFD) that among the different experimental variables, only adsorbent dose, temperature, and pH are significant. At the optimum condition (adsorbent dose 1 g L−1, temperature 313 K, pH 3.0), a maximum fluoride adsorption of 94 % was observed for an initial fluoride concentration of 2.5 mg L−1. A quadratic polynomial model equation based on central composite design (CCD) was built to predict the extent of adsorption. The result of the analysis of variance (ANOVA) shows high coefficients of determination (correlation coefficient; R 2 = 0.9772, adjusted R 2 = 0.9545, and adequate precision = 18.1045) and low probability value (Prob > F, 0.001) which signifies the validity of the model. The equilibrium adsorption data conformed to the Tempkin isotherm, having higher R 2 and lower SE value, among the Langmuir, Freundlich, and Tempkin equations at different temperatures. The adsorption data was found to fit well the second-order rate equation with film diffusion governing the overall rate. The activation energy value was calculated to be 16.74 kJ mol−1. Fluoride can be eluted from fluoride-loaded CCNB using alkali. CCNB can be reused at least for five successive operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abi-aad, E., Bechara, R., Grimblot, J., & Aboukais, A. (1993). Preparation and characterization of CeO2 under an oxidizing atmosphere. Thermal analysis XPS and EPR Study. Chemistry of Materials, 5(6), 793–797.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Gonen, F. (2006). Binary biosorption of phenol and chromium (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Separation and Purification Technology, 49(3), 205–216.

    Article  CAS  Google Scholar 

  • Alagumuthu, G., & Ranjan, M. (2010). Kinetic and equilibrium studies on fluoride removal by zirconium (IV) impregnated ground nut shell carbon. Hemijska Industrija, 64(4), 295–304.

    Article  CAS  Google Scholar 

  • Allen, S. J., Mckay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid Interface Science., 280, 322–333.

    Article  CAS  Google Scholar 

  • Behbahani, M., Moghaddam, M. R. A., & Arami, M. (2011). Techno-economical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology. Desalination, 271(1/3), 209–218.

    Article  CAS  Google Scholar 

  • Boyd, G. E., Adamson, L. S., & Meyers, L. S. (1947). The exchange adsorption of ions from aqueous solution by organic zeolites; kinetics. Journal of the American Chemical Society, 69(11), 2836–2848.

    Article  CAS  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. West Sussex: Wiley.

    Book  Google Scholar 

  • Camacho, L. M., Torres, A., Saha, D., & Deng, S. (2010). Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents. Journal of Colloid and Interface Science, 349(1), 307–313.

    Article  CAS  Google Scholar 

  • Castel, C., Schweizer, M., Simonnot, M. O., & Sardin, M. (2000). Selective removal of fluoride ions by a two-way ion-exchange cyclic process. Chemical Engineering Science, 55(17), 3341–3352.

    Article  CAS  Google Scholar 

  • Chand, D. (1999). Fluoride and human health—causes for concern. Indian Journal of Environmental Protection, 19(2), 81–89.

    CAS  Google Scholar 

  • Chiou, M. S., & Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50(8), 1095–1105.

    Article  CAS  Google Scholar 

  • Crank, J. (1956). The mathematics of diffusion. Oxford: Clarendon.

    Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57(1906), 385–471.

    CAS  Google Scholar 

  • Ghiaci, M., Abbaspur, A., Kia, R., & Seyedeyn-Azad, F. (2004). Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Separation and Purification Technology, 40(3), 217–229.

    Article  CAS  Google Scholar 

  • Goksungur, Y., Uren, S., & Guvenc, U. (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology, 96(1), 103–109.

    Article  Google Scholar 

  • Gupta, V. K., Sriastava, S. K., & Mohan, D. (1997). Equilibrium uptake, sorption dynamics, process optimization and column operation for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Industrial and Engineering Chemistry Research, 36(6), 2207–2218.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Hu, C. Y., Lo, S. L., & Kuan, W. H. (2005). Effects of the molar ratio of hydroxide and fluoride to Al(III) on fluoride removal by coagulation and electro coagulation. Journal of Colloid and Interface Science, 283(2), 472–476.

    Article  CAS  Google Scholar 

  • Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N., & Rayalu, S. (2009). New modified chitosan-based adsorbent for defluoridation of water. Journal of Colloid and Interface Science, 332(2), 280–290.

    Article  CAS  Google Scholar 

  • Jagtap, S., Yenkie, M. K., Labhsetwar, N., & Rayalu, S. (2012). Fluoride in drinking water and defluoridation of water. Chemical Review, 112(4), 2454–2466.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 38(11), 2221–2295.

    Article  CAS  Google Scholar 

  • Larsen, M. J., & Pearce, E. I. F. (2002). Defluoridation of drinking water by boiling with brushite and calcite. Caries Research, 36(5), 341–346.

    Article  CAS  Google Scholar 

  • Li, Z., Deng, S., Zhang, X., Zhou, W., Huang, J., & YU, G. (2010). Removal of fluoride from water using titanium-based adsorbents. Frontiers of Environmental Science & Engineering in China, 4(4), 414–420.

    Article  CAS  Google Scholar 

  • Mckay, G., Allen, J. S., McConvey, I. F., & Otterbeurn, M. S. (1981). Transport process in the sorption of ions by peat particles. Journal of Colloid and Interface Science, 80(2), 323–339.

    Article  CAS  Google Scholar 

  • Medellin-Castillo, N. A., Leyva-Ramos, R., Ocampo-Perez, R., Garcia de la Cruz, R. F., Aragon-Pina, A., Martinez-Rosales, J. M., Guerrero-Coronado, R. M., & Fuentes-Rubio, L. (2007). Adsorption of fluoride from water solution on bone char. Industrial & Engineering Chemistry Research, 46(26), 9205–9212.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2009). Design and analysis of experiments (7th ed.). Hoboken: Wiley.

    Google Scholar 

  • Reichenberg, D. (1953). Properties of ion exchange resins in relation to their structures. III. Kinetics of exchange. Journal of the American Chemical Society, 75(3), 589–597.

    Article  CAS  Google Scholar 

  • Rengaraj, S. J., Yeon, W., Kim, Y., Jung, Y., Ha, Y. K., & Kim, W. H. (2007). Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143(1/2), 469–477.

    Article  CAS  Google Scholar 

  • Rocha, R. A., & Muccillo, E. N. S. (2003). Physical and chemical properties of nanosized powders of gadolinia-doped ceria prepared by the cation complexation technique. Materials Research Bulletin, 38(15), 1979–1986.

    Article  CAS  Google Scholar 

  • Rudzinski, W., & Panczyk, T. (2002). Remarks on the current state of adsorption kinetic theories for heterogeneous solid surfaces: a comparison of the ART and the SRT approaches. Langmuir, 18(2), 439–449.

    Article  CAS  Google Scholar 

  • Santra, D., Joarder, R., & Sarkar, M. (2014). Taguchi design and equilibrium modeling for fluoride adsorption on cerium loaded cellulose nanocomposite bead. Carbohydrate Polymers, 111, 813–821.

    Article  CAS  Google Scholar 

  • Sarici-Özdemir, Ç., & Önal, Y. (2014). Error analysis studies of dye adsorption onto activated carbon from aqueous solutions. Particulate Science and Technology, 32(1), 20–27.

    Article  Google Scholar 

  • Sarkar, M., & Majumdar, P. (2011). Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead. Chemical Engineering Journal, 175, 376–387.

    Article  CAS  Google Scholar 

  • Sarkar, M., Acharya, P., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of Colloid and Interface Science, 266(1), 28–32.

    Article  CAS  Google Scholar 

  • Sarkar, M., Banerjee, A., & Pramanick, P. P. (2006a). Kinetics and mechanism of fluoride removal using laterite. Industrial and Engineering Chemistry Research, 45(17), 5920–5927.

    Article  CAS  Google Scholar 

  • Sarkar, M., Banerjee, A., Pramanik, P. P., & Sarkar, A. R. (2006b). Use of laterite for the removal of fluoride from contaminated drinking water. Journal of Colloid and Interface Science, 302(2), 432–441.

    Article  CAS  Google Scholar 

  • Sarkar, M., Manna, S., & Pramanik, P. P. (2008). Evaluation of the efficiency of fly ash from thermal power plant in controlling aquatic pollution. Journal of Indian Chemical Society, 85(11), 1130–1133.

    CAS  Google Scholar 

  • Sehn, P. (2008). Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland. Desalination, 223(1/3), 73–84.

    Article  CAS  Google Scholar 

  • Sereshti, H., Karimi, M., & Samadi, S. (2009). Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil. Journal of Chromatography A, 1216(2), 198–204.

    Article  CAS  Google Scholar 

  • Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica URSS, 12(3), 217–222.

    Google Scholar 

  • Teutli-Sequeira, A., Solache-Ríos, M., & Balderas-Hernández, P. (2012). Modification effects of hematite with aluminum hydroxide on the removal of fluoride ions from water. Water, Air, and Soil Pollution, 223(1), 319–327.

    Article  CAS  Google Scholar 

  • Veressinina, Y., Trapido, M., Ahelik, V., & Munter, R. (2001). Proceedings of the Estonian Academy of Sciences. Chemistry, 50(2), 81–88.

    CAS  Google Scholar 

  • Viswanathan, N., Sundaram, C. S., & Meenakshi, S. (2009). Removal of fluoride from aqueous solution using protonated chitosan beads. Journal of Hazardous Materials, 161(1), 423–430.

    Article  CAS  Google Scholar 

  • Wang, D. M., Hao, G., Shi, Q. H., & Sun, Y. (2007). Fabrication and characterization of superporous cellulose bead for high-speed protein chromatography. Journal of Chromatography A, 1146(1), 32–40.

    Article  CAS  Google Scholar 

  • Weber, T. W., & Chakravorti, R. K. (1974). Pore and solid diffusion models for fixed‐bed adsorbers. American Institute of Chemical Engineers Journal, 20(2), 228–238.

    Article  CAS  Google Scholar 

  • Yadav, A. K., Abbassi, R., Gupta, A., & Dadashzadeh, M. (2013). Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecological Engineering, 52, 211–218.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (D.S) is grateful to the University of Kalyani for providing research fellowship. The assistances and the instrumental facilities available under UGC-SAP, DST-FIST, and DST-PURSE programs are duly acknowledged. Thanks are due to IACS and SNBNCBS, Kolkata, for SEM and EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, M., Santra, D. Modeling Fluoride Adsorption on Cerium-Loaded Cellulose Bead—Response Surface Methodology, Equilibrium, and Kinetic Studies. Water Air Soil Pollut 226, 30 (2015). https://doi.org/10.1007/s11270-015-2307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2307-8

Keywords

Navigation